L(s) = 1 | + (−0.5 + 1.53i)2-s + (−1.30 − 0.951i)4-s + (−0.809 − 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + (0.309 + 0.951i)11-s + (1.30 − 0.951i)14-s + (1.30 + 0.951i)18-s − 1.61·22-s − 1.61·23-s + (−0.809 + 0.587i)25-s + (0.5 + 1.53i)28-s + (−0.5 − 0.363i)29-s + 0.999·32-s + (−1.30 + 0.951i)36-s + (1.30 + 0.951i)37-s + ⋯ |
L(s) = 1 | + (−0.5 + 1.53i)2-s + (−1.30 − 0.951i)4-s + (−0.809 − 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + (0.309 + 0.951i)11-s + (1.30 − 0.951i)14-s + (1.30 + 0.951i)18-s − 1.61·22-s − 1.61·23-s + (−0.809 + 0.587i)25-s + (0.5 + 1.53i)28-s + (−0.5 − 0.363i)29-s + 0.999·32-s + (−1.30 + 0.951i)36-s + (1.30 + 0.951i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0457 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0457 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3902853021\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3902853021\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
good | 2 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + 1.61T + T^{2} \) |
| 29 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.26177077717334900807571989157, −14.35074948394231895232406990142, −13.17855337388067672444338673541, −11.92155800903954175540221450599, −9.911879241447849028762294713107, −9.414322799362812733857412722582, −7.86864847338819353586449231672, −6.88058601121399683445656354047, −5.99237450344020077548331918694, −4.11400874670323536123765252069,
2.35278045266079068339323690453, 3.89149719521873110298670825170, 5.98104918423109067487880098106, 8.036248377990937902874141406961, 9.212076943517285374974722917022, 10.14236648571518692718561215438, 11.14297921968316790348669077014, 12.12127325306404572877805257579, 13.05999765204023432276871429946, 14.00574811998758571663709470627