Properties

Label 2-768-256.157-c1-0-49
Degree $2$
Conductor $768$
Sign $0.285 + 0.958i$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.24 − 0.677i)2-s + (−0.740 + 0.671i)3-s + (1.08 − 1.68i)4-s + (−0.0647 − 0.258i)5-s + (−0.464 + 1.33i)6-s + (0.00672 + 0.00551i)7-s + (0.204 − 2.82i)8-s + (0.0980 − 0.995i)9-s + (−0.255 − 0.277i)10-s + (2.13 − 1.00i)11-s + (0.327 + 1.97i)12-s + (−1.81 + 1.09i)13-s + (0.0120 + 0.00229i)14-s + (0.221 + 0.148i)15-s + (−1.65 − 3.64i)16-s + (3.61 − 2.41i)17-s + ⋯
L(s)  = 1  + (0.877 − 0.478i)2-s + (−0.427 + 0.387i)3-s + (0.541 − 0.840i)4-s + (−0.0289 − 0.115i)5-s + (−0.189 + 0.545i)6-s + (0.00254 + 0.00208i)7-s + (0.0722 − 0.997i)8-s + (0.0326 − 0.331i)9-s + (−0.0807 − 0.0876i)10-s + (0.642 − 0.304i)11-s + (0.0945 + 0.569i)12-s + (−0.504 + 0.302i)13-s + (0.00323 + 0.000613i)14-s + (0.0572 + 0.0382i)15-s + (−0.414 − 0.910i)16-s + (0.877 − 0.586i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.285 + 0.958i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.285 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $0.285 + 0.958i$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (157, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ 0.285 + 0.958i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.80454 - 1.34471i\)
\(L(\frac12)\) \(\approx\) \(1.80454 - 1.34471i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.24 + 0.677i)T \)
3 \( 1 + (0.740 - 0.671i)T \)
good5 \( 1 + (0.0647 + 0.258i)T + (-4.40 + 2.35i)T^{2} \)
7 \( 1 + (-0.00672 - 0.00551i)T + (1.36 + 6.86i)T^{2} \)
11 \( 1 + (-2.13 + 1.00i)T + (6.97 - 8.50i)T^{2} \)
13 \( 1 + (1.81 - 1.09i)T + (6.12 - 11.4i)T^{2} \)
17 \( 1 + (-3.61 + 2.41i)T + (6.50 - 15.7i)T^{2} \)
19 \( 1 + (-5.02 + 6.77i)T + (-5.51 - 18.1i)T^{2} \)
23 \( 1 + (7.46 - 2.26i)T + (19.1 - 12.7i)T^{2} \)
29 \( 1 + (-4.67 + 1.67i)T + (22.4 - 18.3i)T^{2} \)
31 \( 1 + (-0.898 - 2.16i)T + (-21.9 + 21.9i)T^{2} \)
37 \( 1 + (0.557 - 3.76i)T + (-35.4 - 10.7i)T^{2} \)
41 \( 1 + (4.24 + 2.26i)T + (22.7 + 34.0i)T^{2} \)
43 \( 1 + (5.42 - 5.98i)T + (-4.21 - 42.7i)T^{2} \)
47 \( 1 + (-0.491 + 2.47i)T + (-43.4 - 17.9i)T^{2} \)
53 \( 1 + (-9.64 - 3.44i)T + (40.9 + 33.6i)T^{2} \)
59 \( 1 + (8.65 + 5.18i)T + (27.8 + 52.0i)T^{2} \)
61 \( 1 + (-13.6 - 0.672i)T + (60.7 + 5.97i)T^{2} \)
67 \( 1 + (0.787 - 16.0i)T + (-66.6 - 6.56i)T^{2} \)
71 \( 1 + (-1.19 + 0.117i)T + (69.6 - 13.8i)T^{2} \)
73 \( 1 + (-4.11 + 3.37i)T + (14.2 - 71.5i)T^{2} \)
79 \( 1 + (7.93 - 1.57i)T + (72.9 - 30.2i)T^{2} \)
83 \( 1 + (-1.99 - 13.4i)T + (-79.4 + 24.0i)T^{2} \)
89 \( 1 + (13.3 + 4.04i)T + (74.0 + 49.4i)T^{2} \)
97 \( 1 + (-2.26 + 0.936i)T + (68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05135653733025538994578400743, −9.781828332953312126533884491396, −8.610270822088680889825869098954, −7.19342896970476316668494287960, −6.49232213704240653230605324467, −5.37865790658268125857806505631, −4.77669022525791500089452311950, −3.70701825678165159783277894040, −2.67855504730580172096997406242, −0.992616541361562332116767010018, 1.69879261051321427801557213757, 3.18936896136333049636155747168, 4.16964073649841219493874218199, 5.33075905660868876568418613550, 5.99096755161575652476120144523, 6.89539334853591686716821524723, 7.71824254746895923969466971724, 8.385451977245350016900013859389, 9.830398352622801672152371333734, 10.56002050550177907258803096506

Graph of the $Z$-function along the critical line