Properties

Label 2-768-256.157-c1-0-21
Degree $2$
Conductor $768$
Sign $0.580 - 0.814i$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.00960 + 1.41i)2-s + (−0.740 + 0.671i)3-s + (−1.99 − 0.0271i)4-s + (0.0344 + 0.137i)5-s + (−0.942 − 1.05i)6-s + (−1.05 − 0.865i)7-s + (0.0576 − 2.82i)8-s + (0.0980 − 0.995i)9-s + (−0.194 + 0.0473i)10-s + (2.22 − 1.05i)11-s + (1.50 − 1.32i)12-s + (4.08 − 2.45i)13-s + (1.23 − 1.48i)14-s + (−0.117 − 0.0787i)15-s + (3.99 + 0.108i)16-s + (−0.802 + 0.536i)17-s + ⋯
L(s)  = 1  + (−0.00678 + 0.999i)2-s + (−0.427 + 0.387i)3-s + (−0.999 − 0.0135i)4-s + (0.0154 + 0.0614i)5-s + (−0.384 − 0.430i)6-s + (−0.398 − 0.327i)7-s + (0.0203 − 0.999i)8-s + (0.0326 − 0.331i)9-s + (−0.0615 + 0.0149i)10-s + (0.670 − 0.317i)11-s + (0.433 − 0.381i)12-s + (1.13 − 0.679i)13-s + (0.329 − 0.396i)14-s + (−0.0304 − 0.0203i)15-s + (0.999 + 0.0271i)16-s + (−0.194 + 0.130i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $0.580 - 0.814i$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (157, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ 0.580 - 0.814i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.04145 + 0.536892i\)
\(L(\frac12)\) \(\approx\) \(1.04145 + 0.536892i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.00960 - 1.41i)T \)
3 \( 1 + (0.740 - 0.671i)T \)
good5 \( 1 + (-0.0344 - 0.137i)T + (-4.40 + 2.35i)T^{2} \)
7 \( 1 + (1.05 + 0.865i)T + (1.36 + 6.86i)T^{2} \)
11 \( 1 + (-2.22 + 1.05i)T + (6.97 - 8.50i)T^{2} \)
13 \( 1 + (-4.08 + 2.45i)T + (6.12 - 11.4i)T^{2} \)
17 \( 1 + (0.802 - 0.536i)T + (6.50 - 15.7i)T^{2} \)
19 \( 1 + (-0.299 + 0.404i)T + (-5.51 - 18.1i)T^{2} \)
23 \( 1 + (1.27 - 0.385i)T + (19.1 - 12.7i)T^{2} \)
29 \( 1 + (2.31 - 0.828i)T + (22.4 - 18.3i)T^{2} \)
31 \( 1 + (-1.69 - 4.08i)T + (-21.9 + 21.9i)T^{2} \)
37 \( 1 + (-0.599 + 4.04i)T + (-35.4 - 10.7i)T^{2} \)
41 \( 1 + (-10.1 - 5.41i)T + (22.7 + 34.0i)T^{2} \)
43 \( 1 + (2.07 - 2.29i)T + (-4.21 - 42.7i)T^{2} \)
47 \( 1 + (-0.932 + 4.68i)T + (-43.4 - 17.9i)T^{2} \)
53 \( 1 + (-7.90 - 2.82i)T + (40.9 + 33.6i)T^{2} \)
59 \( 1 + (2.96 + 1.77i)T + (27.8 + 52.0i)T^{2} \)
61 \( 1 + (3.51 + 0.172i)T + (60.7 + 5.97i)T^{2} \)
67 \( 1 + (-0.197 + 4.01i)T + (-66.6 - 6.56i)T^{2} \)
71 \( 1 + (-5.26 + 0.518i)T + (69.6 - 13.8i)T^{2} \)
73 \( 1 + (-8.18 + 6.72i)T + (14.2 - 71.5i)T^{2} \)
79 \( 1 + (0.823 - 0.163i)T + (72.9 - 30.2i)T^{2} \)
83 \( 1 + (-1.77 - 11.9i)T + (-79.4 + 24.0i)T^{2} \)
89 \( 1 + (-14.6 - 4.43i)T + (74.0 + 49.4i)T^{2} \)
97 \( 1 + (-12.7 + 5.27i)T + (68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40708122265421995524024358482, −9.424158714701448392879970489112, −8.734292422246440844186756834929, −7.84819853745366575521874313900, −6.71077790428625383605417589702, −6.18526265140518345523138500675, −5.26974369220359542430456677816, −4.15855418511246679489817680053, −3.36284917952693498732689042502, −0.849674879075178835873801443941, 1.09584648366458624726814036928, 2.30317955054251067794231936245, 3.63940092257117558087045632259, 4.53871540190098730688815471680, 5.74231785763185777240745102114, 6.52948199579379889297717619054, 7.71560595254997337950208871274, 8.868056118933572271822457169286, 9.301231264455047982447679277357, 10.35218331829357360870301910276

Graph of the $Z$-function along the critical line