L(s) = 1 | + (2.55 − 1.57i)3-s − 1.31·5-s + 10.2·7-s + (4.01 − 8.05i)9-s + 16.6·11-s + 18.7i·13-s + (−3.35 + 2.07i)15-s + 4.38i·17-s + 11.5i·19-s + (26.1 − 16.1i)21-s + 16.7i·23-s − 23.2·25-s + (−2.46 − 26.8i)27-s + 12.5·29-s − 20.3·31-s + ⋯ |
L(s) = 1 | + (0.850 − 0.526i)3-s − 0.263·5-s + 1.46·7-s + (0.446 − 0.894i)9-s + 1.51·11-s + 1.44i·13-s + (−0.223 + 0.138i)15-s + 0.257i·17-s + 0.608i·19-s + (1.24 − 0.769i)21-s + 0.728i·23-s − 0.930·25-s + (−0.0912 − 0.995i)27-s + 0.432·29-s − 0.655·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.109487263\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.109487263\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.55 + 1.57i)T \) |
good | 5 | \( 1 + 1.31T + 25T^{2} \) |
| 7 | \( 1 - 10.2T + 49T^{2} \) |
| 11 | \( 1 - 16.6T + 121T^{2} \) |
| 13 | \( 1 - 18.7iT - 169T^{2} \) |
| 17 | \( 1 - 4.38iT - 289T^{2} \) |
| 19 | \( 1 - 11.5iT - 361T^{2} \) |
| 23 | \( 1 - 16.7iT - 529T^{2} \) |
| 29 | \( 1 - 12.5T + 841T^{2} \) |
| 31 | \( 1 + 20.3T + 961T^{2} \) |
| 37 | \( 1 - 18.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 78.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 36.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 19.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 81.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 29.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 72.0iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 56.3iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 136. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 80.8T + 5.32e3T^{2} \) |
| 79 | \( 1 + 86.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + 80.4T + 6.88e3T^{2} \) |
| 89 | \( 1 + 131. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 20.4T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.884846267473088652767177963067, −8.937535055306657223934621792166, −8.525748281118370753375760731208, −7.47878196538586568898890317365, −6.90226574449099937491662262931, −5.73619358403420308747141308566, −4.24559851247513454171766966883, −3.80852551143388970577901123427, −2.00425504135904985675549338902, −1.40300960928038442737086773858,
1.21843955136389648203169651528, 2.52833726838414567221157829907, 3.75961257951898884643560241695, 4.55706606624202706556881308674, 5.45324267278927663674310977030, 6.86070818311138427035368541541, 7.932111647125273724877344598579, 8.315973744942233941187314445477, 9.231926830048881809058412108928, 10.06514233258969934582078620841