L(s) = 1 | + (1 + 1.41i)3-s − 2.82i·5-s − 2.82i·7-s + (−1.00 + 2.82i)9-s + 2·11-s − 4·13-s + (4.00 − 2.82i)15-s − 5.65i·17-s − 2.82i·19-s + (4.00 − 2.82i)21-s + 8·23-s − 3.00·25-s + (−5.00 + 1.41i)27-s + 2.82i·29-s − 8.48i·31-s + ⋯ |
L(s) = 1 | + (0.577 + 0.816i)3-s − 1.26i·5-s − 1.06i·7-s + (−0.333 + 0.942i)9-s + 0.603·11-s − 1.10·13-s + (1.03 − 0.730i)15-s − 1.37i·17-s − 0.648i·19-s + (0.872 − 0.617i)21-s + 1.66·23-s − 0.600·25-s + (−0.962 + 0.272i)27-s + 0.525i·29-s − 1.52i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51855 - 0.786063i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51855 - 0.786063i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1 - 1.41i)T \) |
good | 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 7 | \( 1 + 2.82iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + 5.65iT - 17T^{2} \) |
| 19 | \( 1 + 2.82iT - 19T^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 - 2.82iT - 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 2.82iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 8.48iT - 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 - 14.1iT - 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 2.82iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + 5.65iT - 89T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.953089882344299536716434294638, −9.263378320586195366362382753612, −8.819446980705997261546477777318, −7.62001859279758778663206024957, −7.00130961375351693650600377747, −5.21517854425873512394274344406, −4.76938340074289338914595762334, −3.89946518316382175569935990499, −2.61303592544926057220157268307, −0.835778173840597778927808714701,
1.79918803859608130451973173990, 2.77733901584989806329493698843, 3.58652627780453022808913128848, 5.26960162720519770499206824585, 6.42927177558659482632124989552, 6.83763238364471673847100831033, 7.84788323485869656032738681067, 8.686909875576544106754432464652, 9.476957162199833906927255029521, 10.45943174528697459527542872978