L(s) = 1 | + (−1.41 − i)3-s + (1.00 + 2.82i)9-s − 2.82·11-s + 5.65i·17-s + 2i·19-s + 5·25-s + (1.41 − 5.00i)27-s + (4.00 + 2.82i)33-s + 11.3i·41-s + 10i·43-s + 7·49-s + (5.65 − 8.00i)51-s + (2 − 2.82i)57-s + 14.1·59-s + 14i·67-s + ⋯ |
L(s) = 1 | + (−0.816 − 0.577i)3-s + (0.333 + 0.942i)9-s − 0.852·11-s + 1.37i·17-s + 0.458i·19-s + 25-s + (0.272 − 0.962i)27-s + (0.696 + 0.492i)33-s + 1.76i·41-s + 1.52i·43-s + 49-s + (0.792 − 1.12i)51-s + (0.264 − 0.374i)57-s + 1.84·59-s + 1.71i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.773537 + 0.400412i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.773537 + 0.400412i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.41 + i)T \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 5.65iT - 17T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 - 10iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 14.1T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 14iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 2.82T + 83T^{2} \) |
| 89 | \( 1 + 5.65iT - 89T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55179000133692586262514575894, −9.873826799037773687851782066482, −8.476828726797859763885411463056, −7.88179015385990677364770329742, −6.87910845864649643757293458251, −6.05071528493162728347776000837, −5.24882506383316024809690372661, −4.20664202398672353855469575432, −2.68191299890414399250769527500, −1.31184660084673937374665267419,
0.53428567744807779713219705668, 2.57633293308453698005659839446, 3.82977912038039599091042869748, 5.01467525339356990467809147284, 5.44908602401888469548068597467, 6.72970846236149838163561521362, 7.38401651784986402357208674302, 8.703796018131275315760272578962, 9.419750761933551320894071954498, 10.38473443645050262387954366298