L(s) = 1 | − 1.73i·3-s + 4i·7-s − 2.99·9-s + 6.92·13-s + 3.46i·19-s + 6.92·21-s + 5·25-s + 5.19i·27-s + 4i·31-s + 6.92·37-s − 11.9i·39-s − 10.3i·43-s − 9·49-s + 5.99·57-s + 6.92·61-s + ⋯ |
L(s) = 1 | − 0.999i·3-s + 1.51i·7-s − 0.999·9-s + 1.92·13-s + 0.794i·19-s + 1.51·21-s + 25-s + 0.999i·27-s + 0.718i·31-s + 1.13·37-s − 1.92i·39-s − 1.58i·43-s − 1.28·49-s + 0.794·57-s + 0.887·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57067\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57067\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 1.73iT \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 6.92T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 3.46iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 - 6.92T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 10.3iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 6.92T + 61T^{2} \) |
| 67 | \( 1 + 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48500059087346643667647241012, −9.033172505212252877586664079770, −8.663285819529977919185795192280, −7.897838459503657549846363798341, −6.64905696871188257101548461427, −6.00420247134769971924398583236, −5.29609427236537451164399649436, −3.60228006940604190025792427889, −2.50955281868900227639178013999, −1.33497880206346318025289810884,
0.961431116756912143762059439283, 3.04524455025905021556332456747, 3.98468915010607806036366835180, 4.60861140518971311200195764729, 5.89359848084046176792417654229, 6.74722578855258813372901593312, 7.88571706082725606057267744158, 8.707081547534969049035240311923, 9.565662713196256120989989225114, 10.43263394701690631820877707255