Properties

Label 2-768-1.1-c3-0-9
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $45.3134$
Root an. cond. $6.73152$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 18.4·5-s + 22.4·7-s + 9·9-s − 53.6·11-s + 7.15·13-s − 55.2·15-s + 39.6·17-s − 125.·19-s + 67.2·21-s + 99.1·23-s + 214.·25-s + 27·27-s + 205.·29-s + 147.·31-s − 161.·33-s − 413.·35-s + 125.·37-s + 21.4·39-s − 506.·41-s + 413.·43-s − 165.·45-s − 313.·47-s + 159.·49-s + 119.·51-s − 44.3·53-s + 989.·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.64·5-s + 1.21·7-s + 0.333·9-s − 1.47·11-s + 0.152·13-s − 0.951·15-s + 0.566·17-s − 1.51·19-s + 0.698·21-s + 0.898·23-s + 1.71·25-s + 0.192·27-s + 1.31·29-s + 0.854·31-s − 0.849·33-s − 1.99·35-s + 0.558·37-s + 0.0881·39-s − 1.92·41-s + 1.46·43-s − 0.549·45-s − 0.974·47-s + 0.465·49-s + 0.326·51-s − 0.114·53-s + 2.42·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(45.3134\)
Root analytic conductor: \(6.73152\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.799469179\)
\(L(\frac12)\) \(\approx\) \(1.799469179\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
good5 \( 1 + 18.4T + 125T^{2} \)
7 \( 1 - 22.4T + 343T^{2} \)
11 \( 1 + 53.6T + 1.33e3T^{2} \)
13 \( 1 - 7.15T + 2.19e3T^{2} \)
17 \( 1 - 39.6T + 4.91e3T^{2} \)
19 \( 1 + 125.T + 6.85e3T^{2} \)
23 \( 1 - 99.1T + 1.21e4T^{2} \)
29 \( 1 - 205.T + 2.43e4T^{2} \)
31 \( 1 - 147.T + 2.97e4T^{2} \)
37 \( 1 - 125.T + 5.06e4T^{2} \)
41 \( 1 + 506.T + 6.89e4T^{2} \)
43 \( 1 - 413.T + 7.95e4T^{2} \)
47 \( 1 + 313.T + 1.03e5T^{2} \)
53 \( 1 + 44.3T + 1.48e5T^{2} \)
59 \( 1 - 324T + 2.05e5T^{2} \)
61 \( 1 - 324T + 2.26e5T^{2} \)
67 \( 1 - 464.T + 3.00e5T^{2} \)
71 \( 1 - 1.05e3T + 3.57e5T^{2} \)
73 \( 1 - 1.02e3T + 3.89e5T^{2} \)
79 \( 1 + 602.T + 4.93e5T^{2} \)
83 \( 1 - 15.8T + 5.71e5T^{2} \)
89 \( 1 - 381.T + 7.04e5T^{2} \)
97 \( 1 - 659.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09838087441000592220963069954, −8.518746121198551341147548734499, −8.259683544849912750457108896827, −7.69574257381346550212366550733, −6.71246706392279395615812894056, −5.05808032486682518461639300666, −4.50703349115594732305090359709, −3.42285449418132907109814320853, −2.34881409118744987628544672881, −0.73308795257463845085006709329, 0.73308795257463845085006709329, 2.34881409118744987628544672881, 3.42285449418132907109814320853, 4.50703349115594732305090359709, 5.05808032486682518461639300666, 6.71246706392279395615812894056, 7.69574257381346550212366550733, 8.259683544849912750457108896827, 8.518746121198551341147548734499, 10.09838087441000592220963069954

Graph of the $Z$-function along the critical line