Properties

Label 2-768-1.1-c3-0-10
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $45.3134$
Root an. cond. $6.73152$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 0.612·5-s − 22.7·7-s + 9·9-s − 60.2·11-s + 52.9·13-s + 1.83·15-s + 47.1·17-s − 29.1·19-s − 68.2·21-s + 109.·23-s − 124.·25-s + 27·27-s − 10.4·29-s + 220.·31-s − 180.·33-s − 13.9·35-s + 408.·37-s + 158.·39-s + 360.·41-s + 236.·43-s + 5.51·45-s − 129.·47-s + 174.·49-s + 141.·51-s + 117.·53-s − 36.9·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.0547·5-s − 1.22·7-s + 0.333·9-s − 1.65·11-s + 1.12·13-s + 0.0316·15-s + 0.672·17-s − 0.352·19-s − 0.709·21-s + 0.992·23-s − 0.996·25-s + 0.192·27-s − 0.0667·29-s + 1.27·31-s − 0.953·33-s − 0.0672·35-s + 1.81·37-s + 0.651·39-s + 1.37·41-s + 0.838·43-s + 0.0182·45-s − 0.400·47-s + 0.508·49-s + 0.388·51-s + 0.305·53-s − 0.0905·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(45.3134\)
Root analytic conductor: \(6.73152\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.014305061\)
\(L(\frac12)\) \(\approx\) \(2.014305061\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
good5 \( 1 - 0.612T + 125T^{2} \)
7 \( 1 + 22.7T + 343T^{2} \)
11 \( 1 + 60.2T + 1.33e3T^{2} \)
13 \( 1 - 52.9T + 2.19e3T^{2} \)
17 \( 1 - 47.1T + 4.91e3T^{2} \)
19 \( 1 + 29.1T + 6.85e3T^{2} \)
23 \( 1 - 109.T + 1.21e4T^{2} \)
29 \( 1 + 10.4T + 2.43e4T^{2} \)
31 \( 1 - 220.T + 2.97e4T^{2} \)
37 \( 1 - 408.T + 5.06e4T^{2} \)
41 \( 1 - 360.T + 6.89e4T^{2} \)
43 \( 1 - 236.T + 7.95e4T^{2} \)
47 \( 1 + 129.T + 1.03e5T^{2} \)
53 \( 1 - 117.T + 1.48e5T^{2} \)
59 \( 1 - 262.T + 2.05e5T^{2} \)
61 \( 1 - 273.T + 2.26e5T^{2} \)
67 \( 1 + 89.4T + 3.00e5T^{2} \)
71 \( 1 + 350.T + 3.57e5T^{2} \)
73 \( 1 + 532.T + 3.89e5T^{2} \)
79 \( 1 - 166.T + 4.93e5T^{2} \)
83 \( 1 - 361.T + 5.71e5T^{2} \)
89 \( 1 + 40.3T + 7.04e5T^{2} \)
97 \( 1 + 614.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.915656338882297726604983417962, −9.138767165061614496104429642352, −8.159205428791542731130994177882, −7.51961821174401795845188287536, −6.34776366173089140952924395936, −5.64033945901293393284958228663, −4.30292988943011918607781189934, −3.20465985923510888784387052689, −2.50522096875328354790343445610, −0.76773797028134064576551255095, 0.76773797028134064576551255095, 2.50522096875328354790343445610, 3.20465985923510888784387052689, 4.30292988943011918607781189934, 5.64033945901293393284958228663, 6.34776366173089140952924395936, 7.51961821174401795845188287536, 8.159205428791542731130994177882, 9.138767165061614496104429642352, 9.915656338882297726604983417962

Graph of the $Z$-function along the critical line