L(s) = 1 | − 3·3-s − 10.4·5-s − 6.42·7-s + 9·9-s − 61.6·11-s − 64.8·13-s + 31.2·15-s − 75.6·17-s + 10.3·19-s + 19.2·21-s + 156.·23-s − 16.3·25-s − 27·27-s + 53.7·29-s − 227.·31-s + 185.·33-s + 66.9·35-s − 10.3·37-s + 194.·39-s + 70.4·41-s − 298.·43-s − 93.7·45-s + 89.9·47-s − 301.·49-s + 227.·51-s − 388.·53-s + 642.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.932·5-s − 0.346·7-s + 0.333·9-s − 1.69·11-s − 1.38·13-s + 0.538·15-s − 1.07·17-s + 0.124·19-s + 0.200·21-s + 1.42·23-s − 0.131·25-s − 0.192·27-s + 0.344·29-s − 1.31·31-s + 0.976·33-s + 0.323·35-s − 0.0458·37-s + 0.798·39-s + 0.268·41-s − 1.05·43-s − 0.310·45-s + 0.279·47-s − 0.879·49-s + 0.623·51-s − 1.00·53-s + 1.57·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3248231862\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3248231862\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
good | 5 | \( 1 + 10.4T + 125T^{2} \) |
| 7 | \( 1 + 6.42T + 343T^{2} \) |
| 11 | \( 1 + 61.6T + 1.33e3T^{2} \) |
| 13 | \( 1 + 64.8T + 2.19e3T^{2} \) |
| 17 | \( 1 + 75.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 10.3T + 6.85e3T^{2} \) |
| 23 | \( 1 - 156.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 53.7T + 2.43e4T^{2} \) |
| 31 | \( 1 + 227.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 10.3T + 5.06e4T^{2} \) |
| 41 | \( 1 - 70.4T + 6.89e4T^{2} \) |
| 43 | \( 1 + 298.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 89.9T + 1.03e5T^{2} \) |
| 53 | \( 1 + 388.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 324T + 2.05e5T^{2} \) |
| 61 | \( 1 + 324T + 2.26e5T^{2} \) |
| 67 | \( 1 - 920.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 995.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 362.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.09e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 791.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 150.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.87e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04168311112348861698382369727, −9.152022641719708945015589347488, −7.970385320073127502585552743213, −7.39592972643012927178675942850, −6.55422001671749528302404139658, −5.18184927906689454548206041247, −4.76127678371367661293449945380, −3.39109107281374371855001263709, −2.29645707107620623293386985922, −0.30873367226111079688215583878,
0.30873367226111079688215583878, 2.29645707107620623293386985922, 3.39109107281374371855001263709, 4.76127678371367661293449945380, 5.18184927906689454548206041247, 6.55422001671749528302404139658, 7.39592972643012927178675942850, 7.970385320073127502585552743213, 9.152022641719708945015589347488, 10.04168311112348861698382369727