Properties

Label 2-768-1.1-c3-0-1
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $45.3134$
Root an. cond. $6.73152$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 10.4·5-s − 6.42·7-s + 9·9-s − 61.6·11-s − 64.8·13-s + 31.2·15-s − 75.6·17-s + 10.3·19-s + 19.2·21-s + 156.·23-s − 16.3·25-s − 27·27-s + 53.7·29-s − 227.·31-s + 185.·33-s + 66.9·35-s − 10.3·37-s + 194.·39-s + 70.4·41-s − 298.·43-s − 93.7·45-s + 89.9·47-s − 301.·49-s + 227.·51-s − 388.·53-s + 642.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.932·5-s − 0.346·7-s + 0.333·9-s − 1.69·11-s − 1.38·13-s + 0.538·15-s − 1.07·17-s + 0.124·19-s + 0.200·21-s + 1.42·23-s − 0.131·25-s − 0.192·27-s + 0.344·29-s − 1.31·31-s + 0.976·33-s + 0.323·35-s − 0.0458·37-s + 0.798·39-s + 0.268·41-s − 1.05·43-s − 0.310·45-s + 0.279·47-s − 0.879·49-s + 0.623·51-s − 1.00·53-s + 1.57·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(45.3134\)
Root analytic conductor: \(6.73152\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3248231862\)
\(L(\frac12)\) \(\approx\) \(0.3248231862\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
good5 \( 1 + 10.4T + 125T^{2} \)
7 \( 1 + 6.42T + 343T^{2} \)
11 \( 1 + 61.6T + 1.33e3T^{2} \)
13 \( 1 + 64.8T + 2.19e3T^{2} \)
17 \( 1 + 75.6T + 4.91e3T^{2} \)
19 \( 1 - 10.3T + 6.85e3T^{2} \)
23 \( 1 - 156.T + 1.21e4T^{2} \)
29 \( 1 - 53.7T + 2.43e4T^{2} \)
31 \( 1 + 227.T + 2.97e4T^{2} \)
37 \( 1 + 10.3T + 5.06e4T^{2} \)
41 \( 1 - 70.4T + 6.89e4T^{2} \)
43 \( 1 + 298.T + 7.95e4T^{2} \)
47 \( 1 - 89.9T + 1.03e5T^{2} \)
53 \( 1 + 388.T + 1.48e5T^{2} \)
59 \( 1 + 324T + 2.05e5T^{2} \)
61 \( 1 + 324T + 2.26e5T^{2} \)
67 \( 1 - 920.T + 3.00e5T^{2} \)
71 \( 1 - 995.T + 3.57e5T^{2} \)
73 \( 1 + 362.T + 3.89e5T^{2} \)
79 \( 1 - 1.09e3T + 4.93e5T^{2} \)
83 \( 1 - 791.T + 5.71e5T^{2} \)
89 \( 1 - 150.T + 7.04e5T^{2} \)
97 \( 1 + 1.87e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04168311112348861698382369727, −9.152022641719708945015589347488, −7.970385320073127502585552743213, −7.39592972643012927178675942850, −6.55422001671749528302404139658, −5.18184927906689454548206041247, −4.76127678371367661293449945380, −3.39109107281374371855001263709, −2.29645707107620623293386985922, −0.30873367226111079688215583878, 0.30873367226111079688215583878, 2.29645707107620623293386985922, 3.39109107281374371855001263709, 4.76127678371367661293449945380, 5.18184927906689454548206041247, 6.55422001671749528302404139658, 7.39592972643012927178675942850, 7.970385320073127502585552743213, 9.152022641719708945015589347488, 10.04168311112348861698382369727

Graph of the $Z$-function along the critical line