Properties

Label 2-768-1.1-c1-0-3
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s + 4·11-s − 4·13-s − 2·17-s − 4·19-s − 4·21-s + 8·23-s − 5·25-s − 27-s + 8·29-s + 4·31-s − 4·33-s + 4·37-s + 4·39-s + 6·41-s + 4·43-s + 8·47-s + 9·49-s + 2·51-s + 8·53-s + 4·57-s − 12·59-s − 12·61-s + 4·63-s + 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s + 1.20·11-s − 1.10·13-s − 0.485·17-s − 0.917·19-s − 0.872·21-s + 1.66·23-s − 25-s − 0.192·27-s + 1.48·29-s + 0.718·31-s − 0.696·33-s + 0.657·37-s + 0.640·39-s + 0.937·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s + 0.280·51-s + 1.09·53-s + 0.529·57-s − 1.56·59-s − 1.53·61-s + 0.503·63-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.536299908\)
\(L(\frac12)\) \(\approx\) \(1.536299908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55369204487954849016777034475, −9.426956093382149329706606279385, −8.649901276959931744958431496842, −7.67021342089506565111723692624, −6.85175430383558681973846914652, −5.88446326475989803483764829308, −4.70084538751769099501127599916, −4.33363432781740332926422055062, −2.46196604328535614137231641027, −1.15979350949225944879282791156, 1.15979350949225944879282791156, 2.46196604328535614137231641027, 4.33363432781740332926422055062, 4.70084538751769099501127599916, 5.88446326475989803483764829308, 6.85175430383558681973846914652, 7.67021342089506565111723692624, 8.649901276959931744958431496842, 9.426956093382149329706606279385, 10.55369204487954849016777034475

Graph of the $Z$-function along the critical line