Properties

Label 2-7623-1.1-c1-0-8
Degree $2$
Conductor $7623$
Sign $1$
Analytic cond. $60.8699$
Root an. cond. $7.80192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.36·2-s − 0.141·4-s − 3.14·5-s − 7-s − 2.91·8-s − 4.28·10-s − 4.77·13-s − 1.36·14-s − 3.69·16-s + 4.77·17-s − 7.00·19-s + 0.443·20-s − 5.14·23-s + 4.86·25-s − 6.51·26-s + 0.141·28-s − 7.00·29-s − 3.63·31-s + 0.797·32-s + 6.51·34-s + 3.14·35-s − 9.86·37-s − 9.55·38-s + 9.17·40-s + 3.22·41-s + 4.28·43-s − 7.00·46-s + ⋯
L(s)  = 1  + 0.964·2-s − 0.0706·4-s − 1.40·5-s − 0.377·7-s − 1.03·8-s − 1.35·10-s − 1.32·13-s − 0.364·14-s − 0.924·16-s + 1.15·17-s − 1.60·19-s + 0.0992·20-s − 1.07·23-s + 0.973·25-s − 1.27·26-s + 0.0267·28-s − 1.30·29-s − 0.653·31-s + 0.141·32-s + 1.11·34-s + 0.530·35-s − 1.62·37-s − 1.55·38-s + 1.45·40-s + 0.503·41-s + 0.653·43-s − 1.03·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7623\)    =    \(3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(60.8699\)
Root analytic conductor: \(7.80192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7623,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4393032680\)
\(L(\frac12)\) \(\approx\) \(0.4393032680\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 - 1.36T + 2T^{2} \)
5 \( 1 + 3.14T + 5T^{2} \)
13 \( 1 + 4.77T + 13T^{2} \)
17 \( 1 - 4.77T + 17T^{2} \)
19 \( 1 + 7.00T + 19T^{2} \)
23 \( 1 + 5.14T + 23T^{2} \)
29 \( 1 + 7.00T + 29T^{2} \)
31 \( 1 + 3.63T + 31T^{2} \)
37 \( 1 + 9.86T + 37T^{2} \)
41 \( 1 - 3.22T + 41T^{2} \)
43 \( 1 - 4.28T + 43T^{2} \)
47 \( 1 - 0.778T + 47T^{2} \)
53 \( 1 + 2.28T + 53T^{2} \)
59 \( 1 - 0.363T + 59T^{2} \)
61 \( 1 - 3.22T + 61T^{2} \)
67 \( 1 + 6.59T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 + 3.22T + 73T^{2} \)
79 \( 1 + 3.71T + 79T^{2} \)
83 \( 1 + 1.55T + 83T^{2} \)
89 \( 1 - 5.58T + 89T^{2} \)
97 \( 1 - 6.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75313156583162807215112324886, −7.21934426965194010658859247763, −6.39598709050696225160017916355, −5.58143082535354746540985385948, −4.99030109203501805800038142300, −4.04758106767704680895208379525, −3.87916491334639476478821934364, −3.02747000791118471317600951172, −2.07862807394325359527741541216, −0.26729995558272639143013498662, 0.26729995558272639143013498662, 2.07862807394325359527741541216, 3.02747000791118471317600951172, 3.87916491334639476478821934364, 4.04758106767704680895208379525, 4.99030109203501805800038142300, 5.58143082535354746540985385948, 6.39598709050696225160017916355, 7.21934426965194010658859247763, 7.75313156583162807215112324886

Graph of the $Z$-function along the critical line