Properties

Label 2-762-1.1-c1-0-8
Degree $2$
Conductor $762$
Sign $1$
Analytic cond. $6.08460$
Root an. cond. $2.46669$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 12-s + 2·13-s − 14-s + 16-s + 6·17-s + 18-s + 5·19-s − 21-s + 24-s − 5·25-s + 2·26-s + 27-s − 28-s + 6·29-s − 4·31-s + 32-s + 6·34-s + 36-s + 8·37-s + 5·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 1.14·19-s − 0.218·21-s + 0.204·24-s − 25-s + 0.392·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s + 1/6·36-s + 1.31·37-s + 0.811·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(762\)    =    \(2 \cdot 3 \cdot 127\)
Sign: $1$
Analytic conductor: \(6.08460\)
Root analytic conductor: \(2.46669\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 762,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.908232669\)
\(L(\frac12)\) \(\approx\) \(2.908232669\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
127 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07850886672061059774887164143, −9.763150850055314268514265511614, −8.456030467515693104967547882689, −7.74609743604347874728704384536, −6.78860582496417514402875220589, −5.83169729985955676404261763895, −4.90413220802049523654355402855, −3.61371821867750681081884149864, −3.06109345009375161162336387256, −1.50677993660887870810617642251, 1.50677993660887870810617642251, 3.06109345009375161162336387256, 3.61371821867750681081884149864, 4.90413220802049523654355402855, 5.83169729985955676404261763895, 6.78860582496417514402875220589, 7.74609743604347874728704384536, 8.456030467515693104967547882689, 9.763150850055314268514265511614, 10.07850886672061059774887164143

Graph of the $Z$-function along the critical line