Properties

Label 2-762-1.1-c1-0-7
Degree $2$
Conductor $762$
Sign $1$
Analytic cond. $6.08460$
Root an. cond. $2.46669$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s + 7-s − 8-s + 9-s − 3·10-s + 11-s + 12-s − 2·13-s − 14-s + 3·15-s + 16-s + 3·17-s − 18-s + 5·19-s + 3·20-s + 21-s − 22-s + 23-s − 24-s + 4·25-s + 2·26-s + 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.301·11-s + 0.288·12-s − 0.554·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s + 1.14·19-s + 0.670·20-s + 0.218·21-s − 0.213·22-s + 0.208·23-s − 0.204·24-s + 4/5·25-s + 0.392·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(762\)    =    \(2 \cdot 3 \cdot 127\)
Sign: $1$
Analytic conductor: \(6.08460\)
Root analytic conductor: \(2.46669\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 762,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.817168007\)
\(L(\frac12)\) \(\approx\) \(1.817168007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
127 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09054883061974113404007026137, −9.343625063823747299058375739077, −8.992967941434406102315885951598, −7.69016020478956440151555647818, −7.17274969836490863356399952922, −5.88878294525968431722021150994, −5.20346724256150083623823335566, −3.56962216608174384840472434555, −2.34134556480991416306464799897, −1.42318167149940842052412714883, 1.42318167149940842052412714883, 2.34134556480991416306464799897, 3.56962216608174384840472434555, 5.20346724256150083623823335566, 5.88878294525968431722021150994, 7.17274969836490863356399952922, 7.69016020478956440151555647818, 8.992967941434406102315885951598, 9.343625063823747299058375739077, 10.09054883061974113404007026137

Graph of the $Z$-function along the critical line