L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s − 3·7-s + 8-s + 9-s − 10-s + 11-s − 12-s − 4·13-s − 3·14-s + 15-s + 16-s − 3·17-s + 18-s + 3·19-s − 20-s + 3·21-s + 22-s − 9·23-s − 24-s − 4·25-s − 4·26-s − 27-s − 3·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 1.10·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.688·19-s − 0.223·20-s + 0.654·21-s + 0.213·22-s − 1.87·23-s − 0.204·24-s − 4/5·25-s − 0.784·26-s − 0.192·27-s − 0.566·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 127 | \( 1 - T \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + 3 T + p T^{2} \) |
| 11 | \( 1 - T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 - 3 T + p T^{2} \) |
| 23 | \( 1 + 9 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 4 T + p T^{2} \) |
| 41 | \( 1 - 7 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 + 3 T + p T^{2} \) |
| 59 | \( 1 - 10 T + p T^{2} \) |
| 61 | \( 1 + 12 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.928147625036769791009306961306, −9.357198443814353965479637935122, −7.86834983276436182446241573281, −7.11764279997305079975328606742, −6.25831272489226453588915931506, −5.49408694864832100966053344138, −4.32289075491655634940042995429, −3.55705672384073808317515969833, −2.20421666013649687393162395876, 0,
2.20421666013649687393162395876, 3.55705672384073808317515969833, 4.32289075491655634940042995429, 5.49408694864832100966053344138, 6.25831272489226453588915931506, 7.11764279997305079975328606742, 7.86834983276436182446241573281, 9.357198443814353965479637935122, 9.928147625036769791009306961306