Properties

Label 2-7616-1.1-c1-0-98
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.03·3-s − 1.36·5-s − 7-s − 1.93·9-s − 3.61·11-s + 0.433·13-s + 1.41·15-s − 17-s + 7.98·19-s + 1.03·21-s + 1.16·23-s − 3.13·25-s + 5.09·27-s + 5.61·29-s − 8.77·31-s + 3.73·33-s + 1.36·35-s + 2.03·37-s − 0.448·39-s + 2.09·41-s + 4.28·43-s + 2.64·45-s + 3.77·47-s + 49-s + 1.03·51-s + 12.3·53-s + 4.94·55-s + ⋯
L(s)  = 1  − 0.596·3-s − 0.611·5-s − 0.377·7-s − 0.644·9-s − 1.09·11-s + 0.120·13-s + 0.364·15-s − 0.242·17-s + 1.83·19-s + 0.225·21-s + 0.243·23-s − 0.626·25-s + 0.980·27-s + 1.04·29-s − 1.57·31-s + 0.650·33-s + 0.230·35-s + 0.334·37-s − 0.0717·39-s + 0.327·41-s + 0.653·43-s + 0.393·45-s + 0.550·47-s + 0.142·49-s + 0.144·51-s + 1.70·53-s + 0.666·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + 1.03T + 3T^{2} \)
5 \( 1 + 1.36T + 5T^{2} \)
11 \( 1 + 3.61T + 11T^{2} \)
13 \( 1 - 0.433T + 13T^{2} \)
19 \( 1 - 7.98T + 19T^{2} \)
23 \( 1 - 1.16T + 23T^{2} \)
29 \( 1 - 5.61T + 29T^{2} \)
31 \( 1 + 8.77T + 31T^{2} \)
37 \( 1 - 2.03T + 37T^{2} \)
41 \( 1 - 2.09T + 41T^{2} \)
43 \( 1 - 4.28T + 43T^{2} \)
47 \( 1 - 3.77T + 47T^{2} \)
53 \( 1 - 12.3T + 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 - 4.23T + 61T^{2} \)
67 \( 1 + 0.392T + 67T^{2} \)
71 \( 1 - 6.47T + 71T^{2} \)
73 \( 1 + 5.13T + 73T^{2} \)
79 \( 1 - 1.81T + 79T^{2} \)
83 \( 1 + 3.02T + 83T^{2} \)
89 \( 1 - 15.3T + 89T^{2} \)
97 \( 1 - 0.986T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55936705008409488213227312291, −6.91552671512008516138373726408, −5.95165032521523161492525715640, −5.48717094940140199799694658482, −4.87332814407630679226744185682, −3.88391083015159021515031194887, −3.12119893011401368911991680894, −2.42903550066146997906293540279, −0.955809092500490405412692096853, 0, 0.955809092500490405412692096853, 2.42903550066146997906293540279, 3.12119893011401368911991680894, 3.88391083015159021515031194887, 4.87332814407630679226744185682, 5.48717094940140199799694658482, 5.95165032521523161492525715640, 6.91552671512008516138373726408, 7.55936705008409488213227312291

Graph of the $Z$-function along the critical line