Properties

Label 2-7616-1.1-c1-0-85
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40·3-s − 1.29·5-s − 7-s + 2.79·9-s − 1.09·11-s − 2·13-s + 3.11·15-s + 17-s + 2.40·21-s + 4.81·23-s − 3.32·25-s + 0.483·27-s − 9.32·29-s + 2.97·31-s + 2.63·33-s + 1.29·35-s − 0.907·37-s + 4.81·39-s + 5.90·41-s + 8.31·43-s − 3.62·45-s − 7.64·47-s + 49-s − 2.40·51-s − 5.21·53-s + 1.41·55-s + 2.18·59-s + ⋯
L(s)  = 1  − 1.39·3-s − 0.578·5-s − 0.377·7-s + 0.933·9-s − 0.329·11-s − 0.554·13-s + 0.804·15-s + 0.242·17-s + 0.525·21-s + 1.00·23-s − 0.665·25-s + 0.0930·27-s − 1.73·29-s + 0.533·31-s + 0.458·33-s + 0.218·35-s − 0.149·37-s + 0.771·39-s + 0.921·41-s + 1.26·43-s − 0.539·45-s − 1.11·47-s + 0.142·49-s − 0.337·51-s − 0.715·53-s + 0.190·55-s + 0.284·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + 2.40T + 3T^{2} \)
5 \( 1 + 1.29T + 5T^{2} \)
11 \( 1 + 1.09T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 4.81T + 23T^{2} \)
29 \( 1 + 9.32T + 29T^{2} \)
31 \( 1 - 2.97T + 31T^{2} \)
37 \( 1 + 0.907T + 37T^{2} \)
41 \( 1 - 5.90T + 41T^{2} \)
43 \( 1 - 8.31T + 43T^{2} \)
47 \( 1 + 7.64T + 47T^{2} \)
53 \( 1 + 5.21T + 53T^{2} \)
59 \( 1 - 2.18T + 59T^{2} \)
61 \( 1 + 4.40T + 61T^{2} \)
67 \( 1 - 3.01T + 67T^{2} \)
71 \( 1 - 5.01T + 71T^{2} \)
73 \( 1 - 5.54T + 73T^{2} \)
79 \( 1 - 7.64T + 79T^{2} \)
83 \( 1 - 17.2T + 83T^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 - 7.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57096799853279096409047740067, −6.69082566983150210893606133028, −6.14771593025336144101653755013, −5.37310499371124220508830894406, −4.91349603746266409927078272020, −4.04807239370015839705486618056, −3.25270958787637503703492646918, −2.18726745538713429309706840397, −0.874295096268019284418240540795, 0, 0.874295096268019284418240540795, 2.18726745538713429309706840397, 3.25270958787637503703492646918, 4.04807239370015839705486618056, 4.91349603746266409927078272020, 5.37310499371124220508830894406, 6.14771593025336144101653755013, 6.69082566983150210893606133028, 7.57096799853279096409047740067

Graph of the $Z$-function along the critical line