L(s) = 1 | − 0.698·3-s − 3.66·5-s − 7-s − 2.51·9-s − 3.03·11-s + 2.40·13-s + 2.56·15-s + 17-s − 1.71·19-s + 0.698·21-s + 6.60·23-s + 8.43·25-s + 3.85·27-s − 5.84·29-s − 0.381·31-s + 2.12·33-s + 3.66·35-s + 6.48·37-s − 1.68·39-s − 5.75·41-s − 6.74·43-s + 9.20·45-s + 5.73·47-s + 49-s − 0.698·51-s + 4.98·53-s + 11.1·55-s + ⋯ |
L(s) = 1 | − 0.403·3-s − 1.63·5-s − 0.377·7-s − 0.837·9-s − 0.915·11-s + 0.667·13-s + 0.661·15-s + 0.242·17-s − 0.394·19-s + 0.152·21-s + 1.37·23-s + 1.68·25-s + 0.741·27-s − 1.08·29-s − 0.0684·31-s + 0.369·33-s + 0.619·35-s + 1.06·37-s − 0.269·39-s − 0.898·41-s − 1.02·43-s + 1.37·45-s + 0.836·47-s + 0.142·49-s − 0.0978·51-s + 0.684·53-s + 1.50·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 + 0.698T + 3T^{2} \) |
| 5 | \( 1 + 3.66T + 5T^{2} \) |
| 11 | \( 1 + 3.03T + 11T^{2} \) |
| 13 | \( 1 - 2.40T + 13T^{2} \) |
| 19 | \( 1 + 1.71T + 19T^{2} \) |
| 23 | \( 1 - 6.60T + 23T^{2} \) |
| 29 | \( 1 + 5.84T + 29T^{2} \) |
| 31 | \( 1 + 0.381T + 31T^{2} \) |
| 37 | \( 1 - 6.48T + 37T^{2} \) |
| 41 | \( 1 + 5.75T + 41T^{2} \) |
| 43 | \( 1 + 6.74T + 43T^{2} \) |
| 47 | \( 1 - 5.73T + 47T^{2} \) |
| 53 | \( 1 - 4.98T + 53T^{2} \) |
| 59 | \( 1 - 8.74T + 59T^{2} \) |
| 61 | \( 1 + 0.822T + 61T^{2} \) |
| 67 | \( 1 + 14.1T + 67T^{2} \) |
| 71 | \( 1 - 14.5T + 71T^{2} \) |
| 73 | \( 1 - 9.22T + 73T^{2} \) |
| 79 | \( 1 - 11.2T + 79T^{2} \) |
| 83 | \( 1 + 12.8T + 83T^{2} \) |
| 89 | \( 1 - 10.6T + 89T^{2} \) |
| 97 | \( 1 + 3.08T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.53547755698181556467713748660, −6.94689091810919302754344401596, −6.14735294409618052515957626534, −5.34419126159675604188579483404, −4.76619118903189082557929152810, −3.77400102757382766672779215646, −3.31131709141352298586343146777, −2.45951179862655491352689991950, −0.859530195714047423430091273106, 0,
0.859530195714047423430091273106, 2.45951179862655491352689991950, 3.31131709141352298586343146777, 3.77400102757382766672779215646, 4.76619118903189082557929152810, 5.34419126159675604188579483404, 6.14735294409618052515957626534, 6.94689091810919302754344401596, 7.53547755698181556467713748660