Properties

Label 2-7616-1.1-c1-0-190
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.69·3-s + 2.06·5-s − 7-s + 4.28·9-s − 6.03·11-s − 2.94·13-s + 5.57·15-s + 17-s − 6.57·19-s − 2.69·21-s + 6.75·23-s − 0.728·25-s + 3.45·27-s + 1.85·29-s − 10.5·31-s − 16.2·33-s − 2.06·35-s + 4.17·37-s − 7.94·39-s − 8.24·41-s − 7.78·43-s + 8.84·45-s − 4.43·47-s + 49-s + 2.69·51-s − 2.60·53-s − 12.4·55-s + ⋯
L(s)  = 1  + 1.55·3-s + 0.924·5-s − 0.377·7-s + 1.42·9-s − 1.81·11-s − 0.816·13-s + 1.43·15-s + 0.242·17-s − 1.50·19-s − 0.588·21-s + 1.40·23-s − 0.145·25-s + 0.664·27-s + 0.344·29-s − 1.89·31-s − 2.83·33-s − 0.349·35-s + 0.685·37-s − 1.27·39-s − 1.28·41-s − 1.18·43-s + 1.31·45-s − 0.647·47-s + 0.142·49-s + 0.377·51-s − 0.357·53-s − 1.68·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 2.69T + 3T^{2} \)
5 \( 1 - 2.06T + 5T^{2} \)
11 \( 1 + 6.03T + 11T^{2} \)
13 \( 1 + 2.94T + 13T^{2} \)
19 \( 1 + 6.57T + 19T^{2} \)
23 \( 1 - 6.75T + 23T^{2} \)
29 \( 1 - 1.85T + 29T^{2} \)
31 \( 1 + 10.5T + 31T^{2} \)
37 \( 1 - 4.17T + 37T^{2} \)
41 \( 1 + 8.24T + 41T^{2} \)
43 \( 1 + 7.78T + 43T^{2} \)
47 \( 1 + 4.43T + 47T^{2} \)
53 \( 1 + 2.60T + 53T^{2} \)
59 \( 1 + 6.62T + 59T^{2} \)
61 \( 1 - 3.06T + 61T^{2} \)
67 \( 1 + 7.47T + 67T^{2} \)
71 \( 1 - 1.11T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 - 3.14T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 + 4.25T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69216369032715382163437645332, −7.01534403557589467241374535668, −6.22748569535584254385353104707, −5.24898990059356384808187878648, −4.80768519560051931933219823037, −3.61300884634249185435004296941, −2.96192669349876259734167893998, −2.31491246289632490673065205884, −1.80362041593907853443372415476, 0, 1.80362041593907853443372415476, 2.31491246289632490673065205884, 2.96192669349876259734167893998, 3.61300884634249185435004296941, 4.80768519560051931933219823037, 5.24898990059356384808187878648, 6.22748569535584254385353104707, 7.01534403557589467241374535668, 7.69216369032715382163437645332

Graph of the $Z$-function along the critical line