L(s) = 1 | + 2·3-s + 7-s + 9-s + 6·11-s − 6·13-s − 17-s − 4·19-s + 2·21-s − 4·23-s − 5·25-s − 4·27-s − 4·29-s + 12·33-s − 8·37-s − 12·39-s − 10·41-s + 12·43-s + 8·47-s + 49-s − 2·51-s − 10·53-s − 8·57-s − 4·61-s + 63-s − 4·67-s − 8·69-s − 12·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.377·7-s + 1/3·9-s + 1.80·11-s − 1.66·13-s − 0.242·17-s − 0.917·19-s + 0.436·21-s − 0.834·23-s − 25-s − 0.769·27-s − 0.742·29-s + 2.08·33-s − 1.31·37-s − 1.92·39-s − 1.56·41-s + 1.82·43-s + 1.16·47-s + 1/7·49-s − 0.280·51-s − 1.37·53-s − 1.05·57-s − 0.512·61-s + 0.125·63-s − 0.488·67-s − 0.963·69-s − 1.42·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 - 2 T + p T^{2} \) |
| 5 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 6 T + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 4 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.59202693064829458896909111624, −7.02816168447269739369120985265, −6.23181047138306935169264311709, −5.42793887913299596958179370300, −4.34486329867371249957719224218, −4.00174760970107223213727742563, −3.10510435236463766649558282055, −2.12656194077689104630007103595, −1.71186234567213227440845229269, 0,
1.71186234567213227440845229269, 2.12656194077689104630007103595, 3.10510435236463766649558282055, 4.00174760970107223213727742563, 4.34486329867371249957719224218, 5.42793887913299596958179370300, 6.23181047138306935169264311709, 7.02816168447269739369120985265, 7.59202693064829458896909111624