L(s) = 1 | + 2.30·3-s − 1.30·5-s − 7-s + 2.30·9-s + 0.605·13-s − 3·15-s + 17-s − 0.605·19-s − 2.30·21-s − 3.30·25-s − 1.60·27-s − 0.697·31-s + 1.30·35-s − 4.60·37-s + 1.39·39-s − 6.90·41-s + 3.69·43-s − 3.00·45-s + 2.60·47-s + 49-s + 2.30·51-s + 7.30·53-s − 1.39·57-s − 5.21·59-s − 2.90·61-s − 2.30·63-s − 0.788·65-s + ⋯ |
L(s) = 1 | + 1.32·3-s − 0.582·5-s − 0.377·7-s + 0.767·9-s + 0.167·13-s − 0.774·15-s + 0.242·17-s − 0.138·19-s − 0.502·21-s − 0.660·25-s − 0.308·27-s − 0.125·31-s + 0.220·35-s − 0.757·37-s + 0.223·39-s − 1.07·41-s + 0.563·43-s − 0.447·45-s + 0.380·47-s + 0.142·49-s + 0.322·51-s + 1.00·53-s − 0.184·57-s − 0.678·59-s − 0.372·61-s − 0.290·63-s − 0.0978·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - 2.30T + 3T^{2} \) |
| 5 | \( 1 + 1.30T + 5T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 0.605T + 13T^{2} \) |
| 19 | \( 1 + 0.605T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 0.697T + 31T^{2} \) |
| 37 | \( 1 + 4.60T + 37T^{2} \) |
| 41 | \( 1 + 6.90T + 41T^{2} \) |
| 43 | \( 1 - 3.69T + 43T^{2} \) |
| 47 | \( 1 - 2.60T + 47T^{2} \) |
| 53 | \( 1 - 7.30T + 53T^{2} \) |
| 59 | \( 1 + 5.21T + 59T^{2} \) |
| 61 | \( 1 + 2.90T + 61T^{2} \) |
| 67 | \( 1 + 5.30T + 67T^{2} \) |
| 71 | \( 1 + 13.8T + 71T^{2} \) |
| 73 | \( 1 - 2.90T + 73T^{2} \) |
| 79 | \( 1 + 5.39T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + 9.39T + 89T^{2} \) |
| 97 | \( 1 + 2.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.57536039375549332641684205213, −7.15032720808845486584219161969, −6.20408501780414235099559048568, −5.43868030621029244694009300299, −4.39461891552889317900838829156, −3.75194977994605370017860161274, −3.18259468819457691158692933965, −2.41870442446132389966969414472, −1.48001427681872157249579844859, 0,
1.48001427681872157249579844859, 2.41870442446132389966969414472, 3.18259468819457691158692933965, 3.75194977994605370017860161274, 4.39461891552889317900838829156, 5.43868030621029244694009300299, 6.20408501780414235099559048568, 7.15032720808845486584219161969, 7.57536039375549332641684205213