Properties

Label 2-7616-1.1-c1-0-159
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 3·9-s − 2·11-s − 17-s − 2·19-s + 8·23-s − 25-s − 8·31-s + 2·35-s + 4·37-s − 6·41-s + 4·43-s − 6·45-s − 8·47-s + 49-s + 6·53-s − 4·55-s + 10·59-s − 10·61-s − 3·63-s + 8·67-s − 4·71-s − 10·73-s − 2·77-s + 4·79-s + 9·81-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 9-s − 0.603·11-s − 0.242·17-s − 0.458·19-s + 1.66·23-s − 1/5·25-s − 1.43·31-s + 0.338·35-s + 0.657·37-s − 0.937·41-s + 0.609·43-s − 0.894·45-s − 1.16·47-s + 1/7·49-s + 0.824·53-s − 0.539·55-s + 1.30·59-s − 1.28·61-s − 0.377·63-s + 0.977·67-s − 0.474·71-s − 1.17·73-s − 0.227·77-s + 0.450·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51606420165582292370699563489, −6.80584658211117866681394742191, −6.02792996427685742234709543306, −5.39648301888641876936794255128, −4.97407899427248836000420043781, −3.90223646589081978007515090504, −2.91658480070591982635889937604, −2.32487504750581987201871119964, −1.38611477851746612785212114986, 0, 1.38611477851746612785212114986, 2.32487504750581987201871119964, 2.91658480070591982635889937604, 3.90223646589081978007515090504, 4.97407899427248836000420043781, 5.39648301888641876936794255128, 6.02792996427685742234709543306, 6.80584658211117866681394742191, 7.51606420165582292370699563489

Graph of the $Z$-function along the critical line