Properties

Label 2-7616-1.1-c1-0-142
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.17·3-s + 2.17·5-s + 7-s − 1.61·9-s + 2.52·11-s − 4.02·13-s − 2.55·15-s + 17-s − 5.53·19-s − 1.17·21-s − 4.07·23-s − 0.266·25-s + 5.42·27-s + 4.42·29-s + 2.37·31-s − 2.96·33-s + 2.17·35-s + 6.64·37-s + 4.73·39-s + 7.85·41-s + 9.17·43-s − 3.52·45-s − 12.6·47-s + 49-s − 1.17·51-s + 3.95·53-s + 5.48·55-s + ⋯
L(s)  = 1  − 0.678·3-s + 0.972·5-s + 0.377·7-s − 0.539·9-s + 0.759·11-s − 1.11·13-s − 0.660·15-s + 0.242·17-s − 1.26·19-s − 0.256·21-s − 0.850·23-s − 0.0533·25-s + 1.04·27-s + 0.821·29-s + 0.426·31-s − 0.515·33-s + 0.367·35-s + 1.09·37-s + 0.758·39-s + 1.22·41-s + 1.39·43-s − 0.524·45-s − 1.84·47-s + 0.142·49-s − 0.164·51-s + 0.542·53-s + 0.739·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 1.17T + 3T^{2} \)
5 \( 1 - 2.17T + 5T^{2} \)
11 \( 1 - 2.52T + 11T^{2} \)
13 \( 1 + 4.02T + 13T^{2} \)
19 \( 1 + 5.53T + 19T^{2} \)
23 \( 1 + 4.07T + 23T^{2} \)
29 \( 1 - 4.42T + 29T^{2} \)
31 \( 1 - 2.37T + 31T^{2} \)
37 \( 1 - 6.64T + 37T^{2} \)
41 \( 1 - 7.85T + 41T^{2} \)
43 \( 1 - 9.17T + 43T^{2} \)
47 \( 1 + 12.6T + 47T^{2} \)
53 \( 1 - 3.95T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 + 13.4T + 61T^{2} \)
67 \( 1 + 2.98T + 67T^{2} \)
71 \( 1 + 7.86T + 71T^{2} \)
73 \( 1 + 2.32T + 73T^{2} \)
79 \( 1 + 1.83T + 79T^{2} \)
83 \( 1 - 15.0T + 83T^{2} \)
89 \( 1 - 0.541T + 89T^{2} \)
97 \( 1 + 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59233405854473955938743195176, −6.39473336835752220878288911460, −6.26812127264973593819251874127, −5.56963743894999302515653257630, −4.69808786375592453126089706171, −4.24358712490388287300353561889, −2.88687067534941586952659281812, −2.23512973828654404504520326338, −1.28149416781536503721554254703, 0, 1.28149416781536503721554254703, 2.23512973828654404504520326338, 2.88687067534941586952659281812, 4.24358712490388287300353561889, 4.69808786375592453126089706171, 5.56963743894999302515653257630, 6.26812127264973593819251874127, 6.39473336835752220878288911460, 7.59233405854473955938743195176

Graph of the $Z$-function along the critical line