Properties

Label 2-7616-1.1-c1-0-113
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 7-s − 3·9-s + 2·13-s + 17-s + 4·19-s − 25-s + 6·29-s + 2·35-s + 6·37-s − 6·41-s − 12·43-s + 6·45-s − 8·47-s + 49-s + 2·53-s + 4·59-s − 2·61-s + 3·63-s − 4·65-s + 12·67-s + 2·73-s + 8·79-s + 9·81-s + 12·83-s − 2·85-s + 10·89-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.377·7-s − 9-s + 0.554·13-s + 0.242·17-s + 0.917·19-s − 1/5·25-s + 1.11·29-s + 0.338·35-s + 0.986·37-s − 0.937·41-s − 1.82·43-s + 0.894·45-s − 1.16·47-s + 1/7·49-s + 0.274·53-s + 0.520·59-s − 0.256·61-s + 0.377·63-s − 0.496·65-s + 1.46·67-s + 0.234·73-s + 0.900·79-s + 81-s + 1.31·83-s − 0.216·85-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71282024817693675745013733529, −6.73763985186732377586137626470, −6.26990474233050369942971608193, −5.35539917644036382158361461516, −4.77682145642589218436996001225, −3.63026567116244883219000059570, −3.36366542167825731325973439863, −2.40395727895840686691357326236, −1.08252162774259574666896222029, 0, 1.08252162774259574666896222029, 2.40395727895840686691357326236, 3.36366542167825731325973439863, 3.63026567116244883219000059570, 4.77682145642589218436996001225, 5.35539917644036382158361461516, 6.26990474233050369942971608193, 6.73763985186732377586137626470, 7.71282024817693675745013733529

Graph of the $Z$-function along the critical line