Properties

Label 2-7616-1.1-c1-0-104
Degree $2$
Conductor $7616$
Sign $1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.53·3-s + 0.138·5-s + 7-s + 3.44·9-s − 0.938·11-s + 3.02·13-s + 0.352·15-s + 17-s − 2.38·19-s + 2.53·21-s + 5.51·23-s − 4.98·25-s + 1.11·27-s + 4.99·29-s + 9.85·31-s − 2.38·33-s + 0.138·35-s + 6.85·37-s + 7.68·39-s − 4.61·41-s + 1.86·43-s + 0.477·45-s − 0.273·47-s + 49-s + 2.53·51-s − 6.18·53-s − 0.130·55-s + ⋯
L(s)  = 1  + 1.46·3-s + 0.0621·5-s + 0.377·7-s + 1.14·9-s − 0.282·11-s + 0.840·13-s + 0.0910·15-s + 0.242·17-s − 0.546·19-s + 0.553·21-s + 1.15·23-s − 0.996·25-s + 0.215·27-s + 0.927·29-s + 1.76·31-s − 0.414·33-s + 0.0234·35-s + 1.12·37-s + 1.23·39-s − 0.720·41-s + 0.283·43-s + 0.0712·45-s − 0.0398·47-s + 0.142·49-s + 0.355·51-s − 0.849·53-s − 0.0175·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.157247499\)
\(L(\frac12)\) \(\approx\) \(4.157247499\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 2.53T + 3T^{2} \)
5 \( 1 - 0.138T + 5T^{2} \)
11 \( 1 + 0.938T + 11T^{2} \)
13 \( 1 - 3.02T + 13T^{2} \)
19 \( 1 + 2.38T + 19T^{2} \)
23 \( 1 - 5.51T + 23T^{2} \)
29 \( 1 - 4.99T + 29T^{2} \)
31 \( 1 - 9.85T + 31T^{2} \)
37 \( 1 - 6.85T + 37T^{2} \)
41 \( 1 + 4.61T + 41T^{2} \)
43 \( 1 - 1.86T + 43T^{2} \)
47 \( 1 + 0.273T + 47T^{2} \)
53 \( 1 + 6.18T + 53T^{2} \)
59 \( 1 - 2.88T + 59T^{2} \)
61 \( 1 + 5.38T + 61T^{2} \)
67 \( 1 - 5.80T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 + 5.96T + 79T^{2} \)
83 \( 1 + 8.92T + 83T^{2} \)
89 \( 1 - 2.88T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011949463746335067777884286521, −7.46175913510353003737218760732, −6.54132148544838753143293968432, −5.90483412958623464510027315952, −4.82136475998266345952078748498, −4.23738219663799888934036035791, −3.33832610050524610853350535886, −2.77580241130337242987031403885, −1.95848291349599254021187107662, −0.994927287576462105406171052714, 0.994927287576462105406171052714, 1.95848291349599254021187107662, 2.77580241130337242987031403885, 3.33832610050524610853350535886, 4.23738219663799888934036035791, 4.82136475998266345952078748498, 5.90483412958623464510027315952, 6.54132148544838753143293968432, 7.46175913510353003737218760732, 8.011949463746335067777884286521

Graph of the $Z$-function along the critical line