Properties

Label 2-7616-1.1-c1-0-101
Degree $2$
Conductor $7616$
Sign $-1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.706·3-s − 4.40·5-s − 7-s − 2.50·9-s + 1.09·11-s − 2·13-s − 3.11·15-s + 17-s − 0.706·21-s − 1.41·23-s + 14.4·25-s − 3.88·27-s + 5.32·29-s + 10.1·31-s + 0.772·33-s + 4.40·35-s − 3.09·37-s − 1.41·39-s + 11.2·41-s − 3.21·43-s + 11.0·45-s + 11.0·47-s + 49-s + 0.706·51-s + 6.31·53-s − 4.81·55-s − 2.18·59-s + ⋯
L(s)  = 1  + 0.407·3-s − 1.97·5-s − 0.377·7-s − 0.833·9-s + 0.329·11-s − 0.554·13-s − 0.804·15-s + 0.242·17-s − 0.154·21-s − 0.294·23-s + 2.88·25-s − 0.748·27-s + 0.988·29-s + 1.81·31-s + 0.134·33-s + 0.745·35-s − 0.508·37-s − 0.226·39-s + 1.74·41-s − 0.489·43-s + 1.64·45-s + 1.61·47-s + 0.142·49-s + 0.0989·51-s + 0.867·53-s − 0.649·55-s − 0.284·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 0.706T + 3T^{2} \)
5 \( 1 + 4.40T + 5T^{2} \)
11 \( 1 - 1.09T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 1.41T + 23T^{2} \)
29 \( 1 - 5.32T + 29T^{2} \)
31 \( 1 - 10.1T + 31T^{2} \)
37 \( 1 + 3.09T + 37T^{2} \)
41 \( 1 - 11.2T + 41T^{2} \)
43 \( 1 + 3.21T + 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 6.31T + 53T^{2} \)
59 \( 1 + 2.18T + 59T^{2} \)
61 \( 1 + 1.29T + 61T^{2} \)
67 \( 1 - 2.08T + 67T^{2} \)
71 \( 1 + 11.8T + 71T^{2} \)
73 \( 1 + 7.84T + 73T^{2} \)
79 \( 1 + 11.0T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 + 7.82T + 89T^{2} \)
97 \( 1 - 12.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57112528694490540796941048450, −7.07262009747282027224203392649, −6.25709776062753023637110105062, −5.36209948564928891416979417902, −4.30464540395139742565997541484, −4.09096277293632259606783324496, −2.94867858409933930547363617605, −2.76583735985730193786449659680, −0.986516202633092642417065190050, 0, 0.986516202633092642417065190050, 2.76583735985730193786449659680, 2.94867858409933930547363617605, 4.09096277293632259606783324496, 4.30464540395139742565997541484, 5.36209948564928891416979417902, 6.25709776062753023637110105062, 7.07262009747282027224203392649, 7.57112528694490540796941048450

Graph of the $Z$-function along the critical line