L(s) = 1 | + 2.60·2-s + 4.76·4-s + 5-s − 3.60·7-s + 7.20·8-s + 2.60·10-s − 5.20·11-s − 9.37·14-s + 9.20·16-s + 2.93·17-s − 6.76·19-s + 4.76·20-s − 13.5·22-s − 5.53·23-s + 25-s − 17.1·28-s − 1.83·29-s − 4.10·31-s + 9.53·32-s + 7.63·34-s − 3.60·35-s + 3.53·37-s − 17.6·38-s + 7.20·40-s − 5.37·41-s + 3.16·43-s − 24.8·44-s + ⋯ |
L(s) = 1 | + 1.83·2-s + 2.38·4-s + 0.447·5-s − 1.36·7-s + 2.54·8-s + 0.822·10-s − 1.56·11-s − 2.50·14-s + 2.30·16-s + 0.712·17-s − 1.55·19-s + 1.06·20-s − 2.88·22-s − 1.15·23-s + 0.200·25-s − 3.24·28-s − 0.340·29-s − 0.736·31-s + 1.68·32-s + 1.30·34-s − 0.608·35-s + 0.581·37-s − 2.85·38-s + 1.13·40-s − 0.838·41-s + 0.482·43-s − 3.74·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 2.60T + 2T^{2} \) |
| 7 | \( 1 + 3.60T + 7T^{2} \) |
| 11 | \( 1 + 5.20T + 11T^{2} \) |
| 17 | \( 1 - 2.93T + 17T^{2} \) |
| 19 | \( 1 + 6.76T + 19T^{2} \) |
| 23 | \( 1 + 5.53T + 23T^{2} \) |
| 29 | \( 1 + 1.83T + 29T^{2} \) |
| 31 | \( 1 + 4.10T + 31T^{2} \) |
| 37 | \( 1 - 3.53T + 37T^{2} \) |
| 41 | \( 1 + 5.37T + 41T^{2} \) |
| 43 | \( 1 - 3.16T + 43T^{2} \) |
| 47 | \( 1 - 3.80T + 47T^{2} \) |
| 53 | \( 1 - 5.20T + 53T^{2} \) |
| 59 | \( 1 + 7.37T + 59T^{2} \) |
| 61 | \( 1 + 3.43T + 61T^{2} \) |
| 67 | \( 1 + 3.50T + 67T^{2} \) |
| 71 | \( 1 + 9.70T + 71T^{2} \) |
| 73 | \( 1 - 0.805T + 73T^{2} \) |
| 79 | \( 1 + 4.10T + 79T^{2} \) |
| 83 | \( 1 + 11.5T + 83T^{2} \) |
| 89 | \( 1 - 9.83T + 89T^{2} \) |
| 97 | \( 1 - 5.57T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.26751085836695021815108974995, −6.47198296561747758070656703590, −5.90584262395930892676214656707, −5.57872573533584207235905825244, −4.66827465519160561276170367934, −3.95718905851133141008080033123, −3.19527796236239245220368452352, −2.59359193434862546954718694390, −1.90147249794719231574300785471, 0,
1.90147249794719231574300785471, 2.59359193434862546954718694390, 3.19527796236239245220368452352, 3.95718905851133141008080033123, 4.66827465519160561276170367934, 5.57872573533584207235905825244, 5.90584262395930892676214656707, 6.47198296561747758070656703590, 7.26751085836695021815108974995