Properties

Label 2-7605-1.1-c1-0-207
Degree $2$
Conductor $7605$
Sign $-1$
Analytic cond. $60.7262$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.24·2-s − 0.445·4-s + 5-s − 2.24·7-s − 3.04·8-s + 1.24·10-s − 11-s − 2.80·14-s − 2.91·16-s + 6.49·17-s + 2.33·19-s − 0.445·20-s − 1.24·22-s − 0.198·23-s + 25-s + 1.00·28-s − 3.82·29-s + 1.71·31-s + 2.46·32-s + 8.09·34-s − 2.24·35-s + 4.54·37-s + 2.91·38-s − 3.04·40-s − 5.75·41-s − 3.75·43-s + 0.445·44-s + ⋯
L(s)  = 1  + 0.881·2-s − 0.222·4-s + 0.447·5-s − 0.849·7-s − 1.07·8-s + 0.394·10-s − 0.301·11-s − 0.748·14-s − 0.727·16-s + 1.57·17-s + 0.535·19-s − 0.0995·20-s − 0.265·22-s − 0.0412·23-s + 0.200·25-s + 0.188·28-s − 0.711·29-s + 0.307·31-s + 0.436·32-s + 1.38·34-s − 0.379·35-s + 0.746·37-s + 0.472·38-s − 0.482·40-s − 0.898·41-s − 0.572·43-s + 0.0670·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7605\)    =    \(3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(60.7262\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7605,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 - 1.24T + 2T^{2} \)
7 \( 1 + 2.24T + 7T^{2} \)
11 \( 1 + T + 11T^{2} \)
17 \( 1 - 6.49T + 17T^{2} \)
19 \( 1 - 2.33T + 19T^{2} \)
23 \( 1 + 0.198T + 23T^{2} \)
29 \( 1 + 3.82T + 29T^{2} \)
31 \( 1 - 1.71T + 31T^{2} \)
37 \( 1 - 4.54T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 + 3.75T + 43T^{2} \)
47 \( 1 - 1.97T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 + 9.83T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 - 7.91T + 67T^{2} \)
71 \( 1 + 7.14T + 71T^{2} \)
73 \( 1 - 14.3T + 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 - 12.7T + 83T^{2} \)
89 \( 1 - 6.87T + 89T^{2} \)
97 \( 1 + 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57888896113266503125078178847, −6.35426416578736672797753276736, −6.22482485687130175816787021748, −5.21627087256708054364714415820, −4.95790247058889792920447027046, −3.76051361176831871598243034335, −3.31156340511747248736498561745, −2.61570958057102512126135630168, −1.30647509642092252782956777630, 0, 1.30647509642092252782956777630, 2.61570958057102512126135630168, 3.31156340511747248736498561745, 3.76051361176831871598243034335, 4.95790247058889792920447027046, 5.21627087256708054364714415820, 6.22482485687130175816787021748, 6.35426416578736672797753276736, 7.57888896113266503125078178847

Graph of the $Z$-function along the critical line