L(s) = 1 | − 2.56·2-s + 4.56·4-s − 5-s + 0.438·7-s − 6.56·8-s + 2.56·10-s + 1.56·11-s − 1.12·14-s + 7.68·16-s + 1.56·17-s + 5.12·19-s − 4.56·20-s − 4·22-s + 2.43·23-s + 25-s + 2·28-s − 7.12·29-s − 6·31-s − 6.56·32-s − 4·34-s − 0.438·35-s + 10.6·37-s − 13.1·38-s + 6.56·40-s − 3.56·41-s + 3.12·43-s + 7.12·44-s + ⋯ |
L(s) = 1 | − 1.81·2-s + 2.28·4-s − 0.447·5-s + 0.165·7-s − 2.31·8-s + 0.810·10-s + 0.470·11-s − 0.300·14-s + 1.92·16-s + 0.378·17-s + 1.17·19-s − 1.01·20-s − 0.852·22-s + 0.508·23-s + 0.200·25-s + 0.377·28-s − 1.32·29-s − 1.07·31-s − 1.15·32-s − 0.685·34-s − 0.0741·35-s + 1.75·37-s − 2.12·38-s + 1.03·40-s − 0.556·41-s + 0.476·43-s + 1.07·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.56T + 2T^{2} \) |
| 7 | \( 1 - 0.438T + 7T^{2} \) |
| 11 | \( 1 - 1.56T + 11T^{2} \) |
| 17 | \( 1 - 1.56T + 17T^{2} \) |
| 19 | \( 1 - 5.12T + 19T^{2} \) |
| 23 | \( 1 - 2.43T + 23T^{2} \) |
| 29 | \( 1 + 7.12T + 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 - 10.6T + 37T^{2} \) |
| 41 | \( 1 + 3.56T + 41T^{2} \) |
| 43 | \( 1 - 3.12T + 43T^{2} \) |
| 47 | \( 1 + 11.1T + 47T^{2} \) |
| 53 | \( 1 + 4.68T + 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + 6.68T + 61T^{2} \) |
| 67 | \( 1 - 11.3T + 67T^{2} \) |
| 71 | \( 1 + 10.4T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 - 4.68T + 79T^{2} \) |
| 83 | \( 1 - 16.4T + 83T^{2} \) |
| 89 | \( 1 + 10.6T + 89T^{2} \) |
| 97 | \( 1 + 16.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86075103696705722509416814240, −7.14390670133465069662277381056, −6.48818375566253027590116162180, −5.69231541211854587952549151168, −4.76580405268524777876116588461, −3.60173869925100012485630308708, −2.93298424771510633240372362145, −1.80184217538423766735309764677, −1.12158711447818132821356175477, 0,
1.12158711447818132821356175477, 1.80184217538423766735309764677, 2.93298424771510633240372362145, 3.60173869925100012485630308708, 4.76580405268524777876116588461, 5.69231541211854587952549151168, 6.48818375566253027590116162180, 7.14390670133465069662277381056, 7.86075103696705722509416814240