L(s) = 1 | + 1.65·3-s − 3.65·7-s − 0.273·9-s − 2.65·11-s + 6.13·13-s + 2.34·17-s − 19-s − 6.02·21-s − 5.48·23-s − 5.40·27-s + 0.651·29-s + 6.67·31-s − 4.37·33-s − 8.70·37-s + 10.1·39-s + 1.93·41-s + 2.65·43-s − 3.71·47-s + 6.33·49-s + 3.87·51-s + 13.7·53-s − 1.65·57-s + 7.84·59-s − 1.92·61-s + 0.999·63-s + 4.44·67-s − 9.04·69-s + ⋯ |
L(s) = 1 | + 0.953·3-s − 1.37·7-s − 0.0912·9-s − 0.799·11-s + 1.70·13-s + 0.569·17-s − 0.229·19-s − 1.31·21-s − 1.14·23-s − 1.04·27-s + 0.120·29-s + 1.19·31-s − 0.761·33-s − 1.43·37-s + 1.62·39-s + 0.301·41-s + 0.405·43-s − 0.542·47-s + 0.904·49-s + 0.543·51-s + 1.88·53-s − 0.218·57-s + 1.02·59-s − 0.246·61-s + 0.125·63-s + 0.542·67-s − 1.08·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.074131343\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.074131343\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 1.65T + 3T^{2} \) |
| 7 | \( 1 + 3.65T + 7T^{2} \) |
| 11 | \( 1 + 2.65T + 11T^{2} \) |
| 13 | \( 1 - 6.13T + 13T^{2} \) |
| 17 | \( 1 - 2.34T + 17T^{2} \) |
| 23 | \( 1 + 5.48T + 23T^{2} \) |
| 29 | \( 1 - 0.651T + 29T^{2} \) |
| 31 | \( 1 - 6.67T + 31T^{2} \) |
| 37 | \( 1 + 8.70T + 37T^{2} \) |
| 41 | \( 1 - 1.93T + 41T^{2} \) |
| 43 | \( 1 - 2.65T + 43T^{2} \) |
| 47 | \( 1 + 3.71T + 47T^{2} \) |
| 53 | \( 1 - 13.7T + 53T^{2} \) |
| 59 | \( 1 - 7.84T + 59T^{2} \) |
| 61 | \( 1 + 1.92T + 61T^{2} \) |
| 67 | \( 1 - 4.44T + 67T^{2} \) |
| 71 | \( 1 + 3.54T + 71T^{2} \) |
| 73 | \( 1 + 2.48T + 73T^{2} \) |
| 79 | \( 1 - 15.1T + 79T^{2} \) |
| 83 | \( 1 - 14.7T + 83T^{2} \) |
| 89 | \( 1 + 5.06T + 89T^{2} \) |
| 97 | \( 1 - 3.22T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.011929038992921091401825261168, −7.31014280530597215314684199256, −6.30775120994142807216604715371, −6.04506730574958034697642984353, −5.14194693531596729675377951456, −3.84935859364486843870359201332, −3.55717063183948917377553306319, −2.80787078637535492045992876318, −2.02996644905358274421812119876, −0.66258575320407081197694143663,
0.66258575320407081197694143663, 2.02996644905358274421812119876, 2.80787078637535492045992876318, 3.55717063183948917377553306319, 3.84935859364486843870359201332, 5.14194693531596729675377951456, 6.04506730574958034697642984353, 6.30775120994142807216604715371, 7.31014280530597215314684199256, 8.011929038992921091401825261168