Properties

Label 2-7600-1.1-c1-0-38
Degree $2$
Conductor $7600$
Sign $1$
Analytic cond. $60.6863$
Root an. cond. $7.79014$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.65·3-s − 3.65·7-s − 0.273·9-s − 2.65·11-s + 6.13·13-s + 2.34·17-s − 19-s − 6.02·21-s − 5.48·23-s − 5.40·27-s + 0.651·29-s + 6.67·31-s − 4.37·33-s − 8.70·37-s + 10.1·39-s + 1.93·41-s + 2.65·43-s − 3.71·47-s + 6.33·49-s + 3.87·51-s + 13.7·53-s − 1.65·57-s + 7.84·59-s − 1.92·61-s + 0.999·63-s + 4.44·67-s − 9.04·69-s + ⋯
L(s)  = 1  + 0.953·3-s − 1.37·7-s − 0.0912·9-s − 0.799·11-s + 1.70·13-s + 0.569·17-s − 0.229·19-s − 1.31·21-s − 1.14·23-s − 1.04·27-s + 0.120·29-s + 1.19·31-s − 0.761·33-s − 1.43·37-s + 1.62·39-s + 0.301·41-s + 0.405·43-s − 0.542·47-s + 0.904·49-s + 0.543·51-s + 1.88·53-s − 0.218·57-s + 1.02·59-s − 0.246·61-s + 0.125·63-s + 0.542·67-s − 1.08·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7600\)    =    \(2^{4} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(60.6863\)
Root analytic conductor: \(7.79014\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.074131343\)
\(L(\frac12)\) \(\approx\) \(2.074131343\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 1.65T + 3T^{2} \)
7 \( 1 + 3.65T + 7T^{2} \)
11 \( 1 + 2.65T + 11T^{2} \)
13 \( 1 - 6.13T + 13T^{2} \)
17 \( 1 - 2.34T + 17T^{2} \)
23 \( 1 + 5.48T + 23T^{2} \)
29 \( 1 - 0.651T + 29T^{2} \)
31 \( 1 - 6.67T + 31T^{2} \)
37 \( 1 + 8.70T + 37T^{2} \)
41 \( 1 - 1.93T + 41T^{2} \)
43 \( 1 - 2.65T + 43T^{2} \)
47 \( 1 + 3.71T + 47T^{2} \)
53 \( 1 - 13.7T + 53T^{2} \)
59 \( 1 - 7.84T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 - 4.44T + 67T^{2} \)
71 \( 1 + 3.54T + 71T^{2} \)
73 \( 1 + 2.48T + 73T^{2} \)
79 \( 1 - 15.1T + 79T^{2} \)
83 \( 1 - 14.7T + 83T^{2} \)
89 \( 1 + 5.06T + 89T^{2} \)
97 \( 1 - 3.22T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011929038992921091401825261168, −7.31014280530597215314684199256, −6.30775120994142807216604715371, −6.04506730574958034697642984353, −5.14194693531596729675377951456, −3.84935859364486843870359201332, −3.55717063183948917377553306319, −2.80787078637535492045992876318, −2.02996644905358274421812119876, −0.66258575320407081197694143663, 0.66258575320407081197694143663, 2.02996644905358274421812119876, 2.80787078637535492045992876318, 3.55717063183948917377553306319, 3.84935859364486843870359201332, 5.14194693531596729675377951456, 6.04506730574958034697642984353, 6.30775120994142807216604715371, 7.31014280530597215314684199256, 8.011929038992921091401825261168

Graph of the $Z$-function along the critical line