L(s) = 1 | + 0.554·3-s − 3.04·7-s − 2.69·9-s + 2.93·11-s − 3.24·13-s + 2.15·17-s + 19-s − 1.69·21-s + 1.19·23-s − 3.15·27-s − 1.77·29-s + 9.34·31-s + 1.63·33-s + 1.15·37-s − 1.80·39-s + 8.57·41-s + 5.27·43-s + 2.35·47-s + 2.29·49-s + 1.19·51-s − 8.82·53-s + 0.554·57-s + 5.70·59-s − 9.96·61-s + 8.20·63-s + 4.98·67-s + 0.664·69-s + ⋯ |
L(s) = 1 | + 0.320·3-s − 1.15·7-s − 0.897·9-s + 0.886·11-s − 0.900·13-s + 0.523·17-s + 0.229·19-s − 0.369·21-s + 0.249·23-s − 0.607·27-s − 0.329·29-s + 1.67·31-s + 0.283·33-s + 0.190·37-s − 0.288·39-s + 1.33·41-s + 0.804·43-s + 0.343·47-s + 0.327·49-s + 0.167·51-s − 1.21·53-s + 0.0735·57-s + 0.742·59-s − 1.27·61-s + 1.03·63-s + 0.608·67-s + 0.0800·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 0.554T + 3T^{2} \) |
| 7 | \( 1 + 3.04T + 7T^{2} \) |
| 11 | \( 1 - 2.93T + 11T^{2} \) |
| 13 | \( 1 + 3.24T + 13T^{2} \) |
| 17 | \( 1 - 2.15T + 17T^{2} \) |
| 23 | \( 1 - 1.19T + 23T^{2} \) |
| 29 | \( 1 + 1.77T + 29T^{2} \) |
| 31 | \( 1 - 9.34T + 31T^{2} \) |
| 37 | \( 1 - 1.15T + 37T^{2} \) |
| 41 | \( 1 - 8.57T + 41T^{2} \) |
| 43 | \( 1 - 5.27T + 43T^{2} \) |
| 47 | \( 1 - 2.35T + 47T^{2} \) |
| 53 | \( 1 + 8.82T + 53T^{2} \) |
| 59 | \( 1 - 5.70T + 59T^{2} \) |
| 61 | \( 1 + 9.96T + 61T^{2} \) |
| 67 | \( 1 - 4.98T + 67T^{2} \) |
| 71 | \( 1 + 2.70T + 71T^{2} \) |
| 73 | \( 1 + 13.7T + 73T^{2} \) |
| 79 | \( 1 + 5.66T + 79T^{2} \) |
| 83 | \( 1 + 3.00T + 83T^{2} \) |
| 89 | \( 1 + 10.2T + 89T^{2} \) |
| 97 | \( 1 + 3.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.53887863333186380464030311738, −6.81297594328714632824049897425, −6.13520921682050284307439250236, −5.61556599079074111822971026606, −4.59833976195292091412427318397, −3.83997453568447539388446067130, −2.94635701566468527609621009932, −2.60396422175602822916396223624, −1.19795095115109218900533763898, 0,
1.19795095115109218900533763898, 2.60396422175602822916396223624, 2.94635701566468527609621009932, 3.83997453568447539388446067130, 4.59833976195292091412427318397, 5.61556599079074111822971026606, 6.13520921682050284307439250236, 6.81297594328714632824049897425, 7.53887863333186380464030311738