| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 7-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 11-s + (1 − 1.73i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s − 0.999·18-s + (−0.5 − 0.866i)19-s − 0.999·20-s + (−0.5 − 0.866i)22-s + (−0.5 + 0.866i)23-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 7-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 11-s + (1 − 1.73i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s − 0.999·18-s + (−0.5 − 0.866i)19-s − 0.999·20-s + (−0.5 − 0.866i)22-s + (−0.5 + 0.866i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.267871686\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.267871686\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| good | 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93485441171755481527707135520, −10.06825674519893421042825104863, −8.727327446560190403340937227162, −7.88324086271870167173093584438, −7.59851929498179832566232844072, −6.18683273596882901435283575561, −5.53957220539833212944099355730, −4.82679929257341686661846767837, −3.33634997677515689541557517985, −2.40768412127471461183800674231,
1.37604636577870496423637973947, 2.40058467866563171112762691553, 4.01744006617182300204703109441, 4.60651403833724601930028635338, 5.74952792046197916440694269206, 6.31742644072130962741723524899, 8.058704218817334551105236586684, 8.830312691135980401438075322715, 9.394745800195968114513699742530, 10.48250121262372326865424083650