| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 7-s + 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 11-s + (−1 + 1.73i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + 0.999·18-s + (−0.5 − 0.866i)19-s + 0.999·20-s + (0.5 + 0.866i)22-s + (0.5 − 0.866i)23-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 7-s + 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 11-s + (−1 + 1.73i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + 0.999·18-s + (−0.5 − 0.866i)19-s + 0.999·20-s + (0.5 + 0.866i)22-s + (0.5 − 0.866i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.07807508240\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.07807508240\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| good | 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89240870297608099267138201498, −9.833131092178589342708295578637, −9.206859017586479809392143903735, −8.451001153632169762611776343666, −7.61759914191809537237971471388, −6.65891544052718000998395278507, −4.96007331081898695259924177903, −4.50572225206484644566944009497, −3.06694144039904105032339516369, −2.08769321396684753097294298472,
0.089676225026957079256320263747, 2.77985542565279770626491942103, 3.67214762217264279853545377977, 5.30687633057265073804261624958, 5.96727485365499938531536824715, 6.95034771027252348852081136552, 7.61523393604534488247278275050, 8.386849514986983522717668481825, 9.467670748550108762950823202670, 10.30346219524203263617957729910