Properties

Label 2-760-1.1-c1-0-8
Degree $2$
Conductor $760$
Sign $-1$
Analytic cond. $6.06863$
Root an. cond. $2.46345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.12·3-s − 5-s − 1.51·7-s + 6.76·9-s + 4.24·11-s + 4.15·13-s + 3.12·15-s − 3.51·17-s − 19-s + 4.73·21-s − 8.73·23-s + 25-s − 11.7·27-s + 1.45·29-s − 4.96·31-s − 13.2·33-s + 1.51·35-s + 7.60·37-s − 12.9·39-s − 9.21·41-s − 8.31·43-s − 6.76·45-s + 5.28·47-s − 4.70·49-s + 10.9·51-s + 0.155·53-s − 4.24·55-s + ⋯
L(s)  = 1  − 1.80·3-s − 0.447·5-s − 0.572·7-s + 2.25·9-s + 1.28·11-s + 1.15·13-s + 0.806·15-s − 0.852·17-s − 0.229·19-s + 1.03·21-s − 1.82·23-s + 0.200·25-s − 2.26·27-s + 0.270·29-s − 0.892·31-s − 2.31·33-s + 0.256·35-s + 1.25·37-s − 2.07·39-s − 1.43·41-s − 1.26·43-s − 1.00·45-s + 0.770·47-s − 0.672·49-s + 1.53·51-s + 0.0213·53-s − 0.573·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(6.06863\)
Root analytic conductor: \(2.46345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 3.12T + 3T^{2} \)
7 \( 1 + 1.51T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 - 4.15T + 13T^{2} \)
17 \( 1 + 3.51T + 17T^{2} \)
23 \( 1 + 8.73T + 23T^{2} \)
29 \( 1 - 1.45T + 29T^{2} \)
31 \( 1 + 4.96T + 31T^{2} \)
37 \( 1 - 7.60T + 37T^{2} \)
41 \( 1 + 9.21T + 41T^{2} \)
43 \( 1 + 8.31T + 43T^{2} \)
47 \( 1 - 5.28T + 47T^{2} \)
53 \( 1 - 0.155T + 53T^{2} \)
59 \( 1 + 2.48T + 59T^{2} \)
61 \( 1 + 4.49T + 61T^{2} \)
67 \( 1 - 7.43T + 67T^{2} \)
71 \( 1 - 8.49T + 71T^{2} \)
73 \( 1 + 15.0T + 73T^{2} \)
79 \( 1 + 0.310T + 79T^{2} \)
83 \( 1 + 8.96T + 83T^{2} \)
89 \( 1 - 0.719T + 89T^{2} \)
97 \( 1 - 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14045193155216073244453957464, −9.240599745448566300270306069503, −8.131579358308458661904477506025, −6.77373143567401309148253712603, −6.43879339739781149747044737983, −5.64800226140176224046869953244, −4.38421611084775338443680824516, −3.76015136093424328614137817959, −1.50297959141069652117903727409, 0, 1.50297959141069652117903727409, 3.76015136093424328614137817959, 4.38421611084775338443680824516, 5.64800226140176224046869953244, 6.43879339739781149747044737983, 6.77373143567401309148253712603, 8.131579358308458661904477506025, 9.240599745448566300270306069503, 10.14045193155216073244453957464

Graph of the $Z$-function along the critical line