Properties

Label 2-760-1.1-c1-0-14
Degree $2$
Conductor $760$
Sign $-1$
Analytic cond. $6.06863$
Root an. cond. $2.46345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.363·3-s − 5-s + 1.14·7-s − 2.86·9-s − 2.72·11-s − 4.64·13-s − 0.363·15-s − 0.858·17-s − 19-s + 0.414·21-s − 4.41·23-s + 25-s − 2.13·27-s + 9.42·29-s − 10.2·31-s − 0.990·33-s − 1.14·35-s + 6.77·37-s − 1.68·39-s − 7.55·41-s + 9.29·43-s + 2.86·45-s − 7.00·47-s − 5.69·49-s − 0.311·51-s − 8.64·53-s + 2.72·55-s + ⋯
L(s)  = 1  + 0.209·3-s − 0.447·5-s + 0.431·7-s − 0.955·9-s − 0.822·11-s − 1.28·13-s − 0.0938·15-s − 0.208·17-s − 0.229·19-s + 0.0904·21-s − 0.920·23-s + 0.200·25-s − 0.410·27-s + 1.74·29-s − 1.84·31-s − 0.172·33-s − 0.192·35-s + 1.11·37-s − 0.270·39-s − 1.18·41-s + 1.41·43-s + 0.427·45-s − 1.02·47-s − 0.813·49-s − 0.0436·51-s − 1.18·53-s + 0.367·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(6.06863\)
Root analytic conductor: \(2.46345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 0.363T + 3T^{2} \)
7 \( 1 - 1.14T + 7T^{2} \)
11 \( 1 + 2.72T + 11T^{2} \)
13 \( 1 + 4.64T + 13T^{2} \)
17 \( 1 + 0.858T + 17T^{2} \)
23 \( 1 + 4.41T + 23T^{2} \)
29 \( 1 - 9.42T + 29T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 - 6.77T + 37T^{2} \)
41 \( 1 + 7.55T + 41T^{2} \)
43 \( 1 - 9.29T + 43T^{2} \)
47 \( 1 + 7.00T + 47T^{2} \)
53 \( 1 + 8.64T + 53T^{2} \)
59 \( 1 + 5.14T + 59T^{2} \)
61 \( 1 - 9.45T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 + 5.45T + 71T^{2} \)
73 \( 1 - 6.87T + 73T^{2} \)
79 \( 1 - 17.2T + 79T^{2} \)
83 \( 1 + 14.2T + 83T^{2} \)
89 \( 1 - 13.0T + 89T^{2} \)
97 \( 1 + 9.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.930978514218827801611978907719, −8.971385524946926485274035941654, −8.055160041239651651367071756563, −7.60657153408733379963511641028, −6.38735628882411981497300104999, −5.28914654442083821422453026470, −4.51705102928421661060724424478, −3.15759946591446452613300504056, −2.19209759456665165312882172637, 0, 2.19209759456665165312882172637, 3.15759946591446452613300504056, 4.51705102928421661060724424478, 5.28914654442083821422453026470, 6.38735628882411981497300104999, 7.60657153408733379963511641028, 8.055160041239651651367071756563, 8.971385524946926485274035941654, 9.930978514218827801611978907719

Graph of the $Z$-function along the critical line