L(s) = 1 | − 0.470·3-s − 5-s + 2.71·7-s − 2.77·9-s − 5.55·11-s + 2.02·13-s + 0.470·15-s − 3.77·17-s + 19-s − 1.28·21-s − 5.77·23-s + 25-s + 2.71·27-s − 5.66·29-s + 7.55·31-s + 2.61·33-s − 2.71·35-s − 3.75·37-s − 0.954·39-s − 12.6·41-s − 9.43·43-s + 2.77·45-s + 11.1·47-s + 0.397·49-s + 1.77·51-s − 8.85·53-s + 5.55·55-s + ⋯ |
L(s) = 1 | − 0.271·3-s − 0.447·5-s + 1.02·7-s − 0.926·9-s − 1.67·11-s + 0.562·13-s + 0.121·15-s − 0.916·17-s + 0.229·19-s − 0.279·21-s − 1.20·23-s + 0.200·25-s + 0.523·27-s − 1.05·29-s + 1.35·31-s + 0.455·33-s − 0.459·35-s − 0.616·37-s − 0.152·39-s − 1.97·41-s − 1.43·43-s + 0.414·45-s + 1.62·47-s + 0.0567·49-s + 0.249·51-s − 1.21·53-s + 0.749·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + 0.470T + 3T^{2} \) |
| 7 | \( 1 - 2.71T + 7T^{2} \) |
| 11 | \( 1 + 5.55T + 11T^{2} \) |
| 13 | \( 1 - 2.02T + 13T^{2} \) |
| 17 | \( 1 + 3.77T + 17T^{2} \) |
| 23 | \( 1 + 5.77T + 23T^{2} \) |
| 29 | \( 1 + 5.66T + 29T^{2} \) |
| 31 | \( 1 - 7.55T + 31T^{2} \) |
| 37 | \( 1 + 3.75T + 37T^{2} \) |
| 41 | \( 1 + 12.6T + 41T^{2} \) |
| 43 | \( 1 + 9.43T + 43T^{2} \) |
| 47 | \( 1 - 11.1T + 47T^{2} \) |
| 53 | \( 1 + 8.85T + 53T^{2} \) |
| 59 | \( 1 - 11.4T + 59T^{2} \) |
| 61 | \( 1 + 10.6T + 61T^{2} \) |
| 67 | \( 1 + 11.5T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 9.45T + 73T^{2} \) |
| 79 | \( 1 - 8.94T + 79T^{2} \) |
| 83 | \( 1 + 4.94T + 83T^{2} \) |
| 89 | \( 1 - 15.4T + 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20020928669431709241909838779, −8.737575313337994366301470568337, −8.228861095782982207773762068028, −7.53096182092576360959363346625, −6.26440952286459499269251298369, −5.31852128526798038013231331601, −4.62080971355182172365566202781, −3.25415039825249590894571527107, −2.02150641146546994728047556882, 0,
2.02150641146546994728047556882, 3.25415039825249590894571527107, 4.62080971355182172365566202781, 5.31852128526798038013231331601, 6.26440952286459499269251298369, 7.53096182092576360959363346625, 8.228861095782982207773762068028, 8.737575313337994366301470568337, 10.20020928669431709241909838779