L(s) = 1 | + (0.645 + 1.89i)2-s + 0.820i·3-s + (−3.16 + 2.44i)4-s − 2.38·5-s + (−1.55 + 0.529i)6-s + 12.3i·7-s + (−6.67 − 4.41i)8-s + 8.32·9-s + (−1.53 − 4.50i)10-s − 9.15i·11-s + (−2.00 − 2.59i)12-s + 0.940·13-s + (−23.4 + 7.98i)14-s − 1.95i·15-s + (4.05 − 15.4i)16-s + 27.1·17-s + ⋯ |
L(s) = 1 | + (0.322 + 0.946i)2-s + 0.273i·3-s + (−0.791 + 0.611i)4-s − 0.476·5-s + (−0.258 + 0.0882i)6-s + 1.76i·7-s + (−0.833 − 0.552i)8-s + 0.925·9-s + (−0.153 − 0.450i)10-s − 0.831i·11-s + (−0.167 − 0.216i)12-s + 0.0723·13-s + (−1.67 + 0.570i)14-s − 0.130i·15-s + (0.253 − 0.967i)16-s + 1.59·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.611 - 0.791i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.611 - 0.791i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.564774 + 1.14936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.564774 + 1.14936i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.645 - 1.89i)T \) |
| 19 | \( 1 + 4.35iT \) |
good | 3 | \( 1 - 0.820iT - 9T^{2} \) |
| 5 | \( 1 + 2.38T + 25T^{2} \) |
| 7 | \( 1 - 12.3iT - 49T^{2} \) |
| 11 | \( 1 + 9.15iT - 121T^{2} \) |
| 13 | \( 1 - 0.940T + 169T^{2} \) |
| 17 | \( 1 - 27.1T + 289T^{2} \) |
| 23 | \( 1 - 13.8iT - 529T^{2} \) |
| 29 | \( 1 - 49.8T + 841T^{2} \) |
| 31 | \( 1 + 24.6iT - 961T^{2} \) |
| 37 | \( 1 + 27.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 38.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + 41.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 45.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 19.9T + 2.80e3T^{2} \) |
| 59 | \( 1 + 34.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 33.2T + 3.72e3T^{2} \) |
| 67 | \( 1 - 3.48iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 88.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 19.8T + 5.32e3T^{2} \) |
| 79 | \( 1 + 51.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 6.62iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 31.5T + 7.92e3T^{2} \) |
| 97 | \( 1 - 159.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.95317739041712193718338656280, −13.76593808018077095273042395845, −12.45665226699905645564089303446, −11.79542393712047135110573364661, −9.857346453974866751817614550592, −8.736617445591436913774944275187, −7.75205888824770045185724092610, −6.14846673263707563468663741264, −5.09630037822574433561156502421, −3.39654361255500520752466058899,
1.19273890496772193541549050874, 3.66341852632932273931561708643, 4.69463370649180075740056518270, 6.87641928759963806792994962594, 8.007770747370684216401322367292, 10.06728965408119113640426873386, 10.30246396822755154553989418433, 11.86787070347395798583556112125, 12.68922090160238752619757165578, 13.72660024535126120281232831682