Properties

Label 2-76-4.3-c2-0-3
Degree $2$
Conductor $76$
Sign $-0.600 - 0.799i$
Analytic cond. $2.07085$
Root an. cond. $1.43904$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.89 + 0.632i)2-s + 5.34i·3-s + (3.19 − 2.40i)4-s + 5.79·5-s + (−3.38 − 10.1i)6-s + 5.87i·7-s + (−4.55 + 6.57i)8-s − 19.5·9-s + (−10.9 + 3.66i)10-s − 8.07i·11-s + (12.8 + 17.0i)12-s − 14.0·13-s + (−3.71 − 11.1i)14-s + 30.9i·15-s + (4.47 − 15.3i)16-s + 29.9·17-s + ⋯
L(s)  = 1  + (−0.948 + 0.316i)2-s + 1.78i·3-s + (0.799 − 0.600i)4-s + 1.15·5-s + (−0.563 − 1.68i)6-s + 0.839i·7-s + (−0.568 + 0.822i)8-s − 2.17·9-s + (−1.09 + 0.366i)10-s − 0.734i·11-s + (1.06 + 1.42i)12-s − 1.07·13-s + (−0.265 − 0.796i)14-s + 2.06i·15-s + (0.279 − 0.960i)16-s + 1.76·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.600 - 0.799i$
Analytic conductor: \(2.07085\)
Root analytic conductor: \(1.43904\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (39, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :1),\ -0.600 - 0.799i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.415582 + 0.831453i\)
\(L(\frac12)\) \(\approx\) \(0.415582 + 0.831453i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.89 - 0.632i)T \)
19 \( 1 - 4.35iT \)
good3 \( 1 - 5.34iT - 9T^{2} \)
5 \( 1 - 5.79T + 25T^{2} \)
7 \( 1 - 5.87iT - 49T^{2} \)
11 \( 1 + 8.07iT - 121T^{2} \)
13 \( 1 + 14.0T + 169T^{2} \)
17 \( 1 - 29.9T + 289T^{2} \)
23 \( 1 + 8.74iT - 529T^{2} \)
29 \( 1 - 13.4T + 841T^{2} \)
31 \( 1 - 7.65iT - 961T^{2} \)
37 \( 1 - 25.1T + 1.36e3T^{2} \)
41 \( 1 - 49.6T + 1.68e3T^{2} \)
43 \( 1 - 47.2iT - 1.84e3T^{2} \)
47 \( 1 + 46.8iT - 2.20e3T^{2} \)
53 \( 1 + 14.1T + 2.80e3T^{2} \)
59 \( 1 + 100. iT - 3.48e3T^{2} \)
61 \( 1 + 31.1T + 3.72e3T^{2} \)
67 \( 1 + 34.5iT - 4.48e3T^{2} \)
71 \( 1 - 66.0iT - 5.04e3T^{2} \)
73 \( 1 + 27.5T + 5.32e3T^{2} \)
79 \( 1 + 40.9iT - 6.24e3T^{2} \)
83 \( 1 - 87.8iT - 6.88e3T^{2} \)
89 \( 1 - 28.6T + 7.92e3T^{2} \)
97 \( 1 - 9.35T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74378085162896993465477666588, −14.29326181686783753350890677420, −12.06027484347590400747157002855, −10.78743482820009645488925370248, −9.808413450140216365014253577691, −9.444679317546106714968812254587, −8.218407574065842333686051952400, −5.96196846265594007795345986338, −5.24539027922627983342565951823, −2.80497305752348175112421955489, 1.18649868569568905180848082206, 2.50844610645954649694131252476, 5.93278891316526139316557196965, 7.21300566302059653428119896037, 7.73473474469285692476307801533, 9.413672861997431809683677520023, 10.36932702755899078334385459764, 11.92562288293722383063026453770, 12.63637970385176286066739818848, 13.63126644965022193006085812365

Graph of the $Z$-function along the critical line