Properties

Label 2-76-19.2-c4-0-5
Degree $2$
Conductor $76$
Sign $0.206 + 0.978i$
Analytic cond. $7.85611$
Root an. cond. $2.80287$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.92 − 3.48i)3-s + (20.0 − 7.31i)5-s + (−36.0 − 62.3i)7-s + (10.4 + 59.4i)9-s + (55.1 − 95.5i)11-s + (−18.3 − 21.9i)13-s + (33.2 − 91.3i)15-s + (66.2 − 375. i)17-s + (−20.3 − 360. i)19-s + (−322. − 56.8i)21-s + (225. + 82.0i)23-s + (−128. + 107. i)25-s + (556. + 321. i)27-s + (1.17e3 − 206. i)29-s + (−806. + 465. i)31-s + ⋯
L(s)  = 1  + (0.324 − 0.386i)3-s + (0.803 − 0.292i)5-s + (−0.734 − 1.27i)7-s + (0.129 + 0.733i)9-s + (0.455 − 0.789i)11-s + (−0.108 − 0.129i)13-s + (0.147 − 0.405i)15-s + (0.229 − 1.30i)17-s + (−0.0564 − 0.998i)19-s + (−0.730 − 0.128i)21-s + (0.426 + 0.155i)23-s + (−0.205 + 0.172i)25-s + (0.763 + 0.440i)27-s + (1.39 − 0.245i)29-s + (−0.839 + 0.484i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 + 0.978i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.206 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $0.206 + 0.978i$
Analytic conductor: \(7.85611\)
Root analytic conductor: \(2.80287\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :2),\ 0.206 + 0.978i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.45750 - 1.18213i\)
\(L(\frac12)\) \(\approx\) \(1.45750 - 1.18213i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (20.3 + 360. i)T \)
good3 \( 1 + (-2.92 + 3.48i)T + (-14.0 - 79.7i)T^{2} \)
5 \( 1 + (-20.0 + 7.31i)T + (478. - 401. i)T^{2} \)
7 \( 1 + (36.0 + 62.3i)T + (-1.20e3 + 2.07e3i)T^{2} \)
11 \( 1 + (-55.1 + 95.5i)T + (-7.32e3 - 1.26e4i)T^{2} \)
13 \( 1 + (18.3 + 21.9i)T + (-4.95e3 + 2.81e4i)T^{2} \)
17 \( 1 + (-66.2 + 375. i)T + (-7.84e4 - 2.85e4i)T^{2} \)
23 \( 1 + (-225. - 82.0i)T + (2.14e5 + 1.79e5i)T^{2} \)
29 \( 1 + (-1.17e3 + 206. i)T + (6.64e5 - 2.41e5i)T^{2} \)
31 \( 1 + (806. - 465. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 - 1.39e3iT - 1.87e6T^{2} \)
41 \( 1 + (1.66e3 - 1.98e3i)T + (-4.90e5 - 2.78e6i)T^{2} \)
43 \( 1 + (-2.03e3 + 741. i)T + (2.61e6 - 2.19e6i)T^{2} \)
47 \( 1 + (-593. - 3.36e3i)T + (-4.58e6 + 1.66e6i)T^{2} \)
53 \( 1 + (799. - 2.19e3i)T + (-6.04e6 - 5.07e6i)T^{2} \)
59 \( 1 + (186. + 32.9i)T + (1.13e7 + 4.14e6i)T^{2} \)
61 \( 1 + (1.41e3 + 514. i)T + (1.06e7 + 8.89e6i)T^{2} \)
67 \( 1 + (-7.40e3 + 1.30e3i)T + (1.89e7 - 6.89e6i)T^{2} \)
71 \( 1 + (1.33e3 + 3.67e3i)T + (-1.94e7 + 1.63e7i)T^{2} \)
73 \( 1 + (-2.64e3 - 2.21e3i)T + (4.93e6 + 2.79e7i)T^{2} \)
79 \( 1 + (-685. + 816. i)T + (-6.76e6 - 3.83e7i)T^{2} \)
83 \( 1 + (2.62e3 + 4.54e3i)T + (-2.37e7 + 4.11e7i)T^{2} \)
89 \( 1 + (333. + 397. i)T + (-1.08e7 + 6.17e7i)T^{2} \)
97 \( 1 + (-1.37e4 - 2.43e3i)T + (8.31e7 + 3.02e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75337858068255449439550558588, −12.82590792638026482928303455131, −11.20936997098993988449712506568, −10.09056379341844915695757785431, −9.063369783810810481543991597958, −7.56907964767355380579930184650, −6.52614617217289130202847128526, −4.87046208901512947877284369340, −2.98244847747023077229706377604, −0.997248551433172573537428783225, 2.14639400919099157902392416536, 3.74271305065169205998121367021, 5.72146952693082803021835394650, 6.65448308585356960485006712627, 8.623733817347862812370773393743, 9.543674933760767031044855895728, 10.29350101231828004284943882817, 12.14450215351057546483123169301, 12.68986685799090187471300873816, 14.28345822053073694704165582754

Graph of the $Z$-function along the critical line