Properties

Label 2-76-19.14-c4-0-6
Degree $2$
Conductor $76$
Sign $-0.279 + 0.960i$
Analytic cond. $7.85611$
Root an. cond. $2.80287$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.48 + 1.32i)3-s + (−18.9 − 15.8i)5-s + (−39.3 − 68.2i)7-s + (−21.7 − 7.93i)9-s + (20.6 − 35.7i)11-s + (132. − 23.4i)13-s + (−120. − 143. i)15-s + (120. − 43.7i)17-s + (−321. + 163. i)19-s + (−204. − 562. i)21-s + (360. − 302. i)23-s + (−2.69 − 15.2i)25-s + (−686. − 396. i)27-s + (15.3 − 42.2i)29-s + (469. − 271. i)31-s + ⋯
L(s)  = 1  + (0.831 + 0.146i)3-s + (−0.756 − 0.634i)5-s + (−0.803 − 1.39i)7-s + (−0.269 − 0.0979i)9-s + (0.170 − 0.295i)11-s + (0.786 − 0.138i)13-s + (−0.536 − 0.639i)15-s + (0.415 − 0.151i)17-s + (−0.891 + 0.452i)19-s + (−0.464 − 1.27i)21-s + (0.680 − 0.571i)23-s + (−0.00430 − 0.0244i)25-s + (−0.941 − 0.543i)27-s + (0.0182 − 0.0502i)29-s + (0.488 − 0.282i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.279 + 0.960i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.279 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.279 + 0.960i$
Analytic conductor: \(7.85611\)
Root analytic conductor: \(2.80287\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (33, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :2),\ -0.279 + 0.960i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.823877 - 1.09732i\)
\(L(\frac12)\) \(\approx\) \(0.823877 - 1.09732i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (321. - 163. i)T \)
good3 \( 1 + (-7.48 - 1.32i)T + (76.1 + 27.7i)T^{2} \)
5 \( 1 + (18.9 + 15.8i)T + (108. + 615. i)T^{2} \)
7 \( 1 + (39.3 + 68.2i)T + (-1.20e3 + 2.07e3i)T^{2} \)
11 \( 1 + (-20.6 + 35.7i)T + (-7.32e3 - 1.26e4i)T^{2} \)
13 \( 1 + (-132. + 23.4i)T + (2.68e4 - 9.76e3i)T^{2} \)
17 \( 1 + (-120. + 43.7i)T + (6.39e4 - 5.36e4i)T^{2} \)
23 \( 1 + (-360. + 302. i)T + (4.85e4 - 2.75e5i)T^{2} \)
29 \( 1 + (-15.3 + 42.2i)T + (-5.41e5 - 4.54e5i)T^{2} \)
31 \( 1 + (-469. + 271. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 - 1.45e3iT - 1.87e6T^{2} \)
41 \( 1 + (1.48e3 + 261. i)T + (2.65e6 + 9.66e5i)T^{2} \)
43 \( 1 + (-2.13e3 - 1.79e3i)T + (5.93e5 + 3.36e6i)T^{2} \)
47 \( 1 + (-3.36e3 - 1.22e3i)T + (3.73e6 + 3.13e6i)T^{2} \)
53 \( 1 + (3.04e3 + 3.63e3i)T + (-1.37e6 + 7.77e6i)T^{2} \)
59 \( 1 + (165. + 455. i)T + (-9.28e6 + 7.78e6i)T^{2} \)
61 \( 1 + (-4.39e3 + 3.68e3i)T + (2.40e6 - 1.36e7i)T^{2} \)
67 \( 1 + (1.80e3 - 4.95e3i)T + (-1.54e7 - 1.29e7i)T^{2} \)
71 \( 1 + (-4.21e3 + 5.02e3i)T + (-4.41e6 - 2.50e7i)T^{2} \)
73 \( 1 + (-746. + 4.23e3i)T + (-2.66e7 - 9.71e6i)T^{2} \)
79 \( 1 + (2.53e3 + 446. i)T + (3.66e7 + 1.33e7i)T^{2} \)
83 \( 1 + (-424. - 735. i)T + (-2.37e7 + 4.11e7i)T^{2} \)
89 \( 1 + (2.58e3 - 455. i)T + (5.89e7 - 2.14e7i)T^{2} \)
97 \( 1 + (1.83e3 + 5.03e3i)T + (-6.78e7 + 5.69e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52306712768298449436331177971, −12.57004549160529187307498479744, −11.16945270530497616591856492618, −9.978444419077045900504334090811, −8.708128268507220932352991100622, −7.87418304534010420736638326659, −6.40145660379682040578936033782, −4.25988853896941232583893023958, −3.30557056828772739139164111843, −0.63910691977510124871607872174, 2.49239094492401657839700711059, 3.60000693648282947579467407044, 5.79314444051148093180496852635, 7.16752298465344490503205485632, 8.523438814002885876803609965928, 9.233605282116168948839925251812, 10.86983836973494445880011042531, 11.96798464102090850889898237653, 13.00827437526802005214928713546, 14.21679131458182294295950083803

Graph of the $Z$-function along the critical line