Properties

Label 2-756-108.11-c1-0-25
Degree $2$
Conductor $756$
Sign $-0.887 + 0.461i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.644 + 1.25i)2-s + (0.836 + 1.51i)3-s + (−1.17 + 1.62i)4-s + (−0.0400 + 0.110i)5-s + (−1.37 + 2.02i)6-s + (−0.984 − 0.173i)7-s + (−2.79 − 0.428i)8-s + (−1.60 + 2.53i)9-s + (−0.164 + 0.0204i)10-s + (−2.20 + 0.801i)11-s + (−3.43 − 0.418i)12-s + (−1.62 + 1.36i)13-s + (−0.415 − 1.35i)14-s + (−0.200 + 0.0312i)15-s + (−1.26 − 3.79i)16-s + (2.23 − 1.28i)17-s + ⋯
L(s)  = 1  + (0.455 + 0.890i)2-s + (0.482 + 0.875i)3-s + (−0.585 + 0.810i)4-s + (−0.0179 + 0.0491i)5-s + (−0.559 + 0.828i)6-s + (−0.372 − 0.0656i)7-s + (−0.988 − 0.151i)8-s + (−0.533 + 0.845i)9-s + (−0.0519 + 0.00646i)10-s + (−0.664 + 0.241i)11-s + (−0.992 − 0.120i)12-s + (−0.450 + 0.377i)13-s + (−0.111 − 0.361i)14-s + (−0.0517 + 0.00807i)15-s + (−0.315 − 0.949i)16-s + (0.541 − 0.312i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $-0.887 + 0.461i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ -0.887 + 0.461i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.336613 - 1.37660i\)
\(L(\frac12)\) \(\approx\) \(0.336613 - 1.37660i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.644 - 1.25i)T \)
3 \( 1 + (-0.836 - 1.51i)T \)
7 \( 1 + (0.984 + 0.173i)T \)
good5 \( 1 + (0.0400 - 0.110i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (2.20 - 0.801i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (1.62 - 1.36i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-2.23 + 1.28i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.48 + 1.43i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.586 - 3.32i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (0.464 - 0.553i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (2.32 - 0.410i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-2.30 - 3.99i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.60 - 5.49i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (0.311 + 0.856i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (2.28 - 12.9i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 3.88iT - 53T^{2} \)
59 \( 1 + (-5.02 - 1.83i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-2.26 + 12.8i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (0.426 + 0.507i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (1.17 + 2.04i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.70 + 6.42i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (6.67 - 7.95i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-8.00 - 6.71i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-3.97 - 2.29i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.17 + 1.88i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72243154442948781679123212740, −9.617155502807901540697691886435, −9.230688828248020254641976267833, −8.114391640421345072591559321942, −7.47308619422375679718300886155, −6.43204357577694831674037865427, −5.27727362647377669938992902019, −4.67379473614841560604189966008, −3.56314476382484617621500763290, −2.67349157227811052429491696143, 0.56410978744117478456747607180, 2.14665934174847499284193818245, 2.96214186291638893581037575064, 4.02811217028234003918114934843, 5.37830139394735582411999760304, 6.16463154953027374543586511931, 7.24299419790424720247431433939, 8.327430348856798605825583514736, 8.960934705831390552652157169407, 10.06537964926476708638967633352

Graph of the $Z$-function along the critical line