Properties

Label 2-756-108.11-c1-0-19
Degree $2$
Conductor $756$
Sign $0.160 - 0.986i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.983 − 1.01i)2-s + (−1.72 + 0.160i)3-s + (−0.0664 + 1.99i)4-s + (−0.805 + 2.21i)5-s + (1.85 + 1.59i)6-s + (0.984 + 0.173i)7-s + (2.09 − 1.89i)8-s + (2.94 − 0.554i)9-s + (3.04 − 1.35i)10-s + (1.94 − 0.709i)11-s + (−0.206 − 3.45i)12-s + (−3.19 + 2.67i)13-s + (−0.791 − 1.17i)14-s + (1.03 − 3.94i)15-s + (−3.99 − 0.265i)16-s + (4.68 − 2.70i)17-s + ⋯
L(s)  = 1  + (−0.695 − 0.718i)2-s + (−0.995 + 0.0928i)3-s + (−0.0332 + 0.999i)4-s + (−0.360 + 0.989i)5-s + (0.758 + 0.651i)6-s + (0.372 + 0.0656i)7-s + (0.741 − 0.671i)8-s + (0.982 − 0.184i)9-s + (0.961 − 0.429i)10-s + (0.587 − 0.213i)11-s + (−0.0597 − 0.998i)12-s + (−0.885 + 0.743i)13-s + (−0.211 − 0.313i)14-s + (0.266 − 1.01i)15-s + (−0.997 − 0.0664i)16-s + (1.13 − 0.655i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.160 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $0.160 - 0.986i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 0.160 - 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.435825 + 0.370553i\)
\(L(\frac12)\) \(\approx\) \(0.435825 + 0.370553i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.983 + 1.01i)T \)
3 \( 1 + (1.72 - 0.160i)T \)
7 \( 1 + (-0.984 - 0.173i)T \)
good5 \( 1 + (0.805 - 2.21i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (-1.94 + 0.709i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (3.19 - 2.67i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-4.68 + 2.70i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.343 - 0.198i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.240 - 1.36i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.74 + 3.26i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (9.24 - 1.62i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-5.36 - 9.28i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (6.40 + 7.63i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.80 - 7.69i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (1.63 - 9.26i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 5.29iT - 53T^{2} \)
59 \( 1 + (-1.36 - 0.496i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (1.74 - 9.87i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (1.72 + 2.05i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (5.21 + 9.02i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.42 + 5.93i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.98 - 7.12i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-7.37 - 6.18i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-6.47 - 3.73i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (1.37 - 0.499i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67022269583391995684046577204, −9.820967974661620339851803543387, −9.197659451668965517838051239541, −7.75492662060748525679445998838, −7.23291755514447419694493087179, −6.36568312372928602638591507905, −5.00372418656151742118218060788, −3.96888708505857568425134188926, −2.86866762953614883149582144757, −1.34437180467724322264487529799, 0.47689114271664008583664033358, 1.64702162528261673428576569103, 4.09614364102852790069679304139, 5.15109361980401370665611399409, 5.55518145273604552546906106056, 6.77587613870222494322453765979, 7.57531721506881133243879004903, 8.292180263636246521413142087722, 9.282607468456395730617848194442, 10.10213195621728113342099085688

Graph of the $Z$-function along the critical line