Properties

Label 2-756-108.11-c1-0-16
Degree $2$
Conductor $756$
Sign $-0.686 - 0.727i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.32 + 0.506i)2-s + (−1.02 − 1.39i)3-s + (1.48 + 1.33i)4-s + (−0.779 + 2.14i)5-s + (−0.643 − 2.36i)6-s + (−0.984 − 0.173i)7-s + (1.28 + 2.51i)8-s + (−0.904 + 2.86i)9-s + (−2.11 + 2.43i)10-s + (−5.69 + 2.07i)11-s + (0.347 − 3.44i)12-s + (2.72 − 2.28i)13-s + (−1.21 − 0.728i)14-s + (3.78 − 1.10i)15-s + (0.419 + 3.97i)16-s + (−5.84 + 3.37i)17-s + ⋯
L(s)  = 1  + (0.933 + 0.358i)2-s + (−0.590 − 0.806i)3-s + (0.743 + 0.668i)4-s + (−0.348 + 0.957i)5-s + (−0.262 − 0.964i)6-s + (−0.372 − 0.0656i)7-s + (0.454 + 0.890i)8-s + (−0.301 + 0.953i)9-s + (−0.668 + 0.769i)10-s + (−1.71 + 0.624i)11-s + (0.100 − 0.994i)12-s + (0.755 − 0.634i)13-s + (−0.324 − 0.194i)14-s + (0.978 − 0.284i)15-s + (0.104 + 0.994i)16-s + (−1.41 + 0.818i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 - 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.686 - 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $-0.686 - 0.727i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ -0.686 - 0.727i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.474281 + 1.09992i\)
\(L(\frac12)\) \(\approx\) \(0.474281 + 1.09992i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.32 - 0.506i)T \)
3 \( 1 + (1.02 + 1.39i)T \)
7 \( 1 + (0.984 + 0.173i)T \)
good5 \( 1 + (0.779 - 2.14i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (5.69 - 2.07i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-2.72 + 2.28i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (5.84 - 3.37i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.21 + 0.701i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.430 + 2.44i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (1.90 - 2.26i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (1.27 - 0.225i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-4.61 - 7.99i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.27 + 1.52i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.90 - 7.99i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.14 + 6.50i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 5.43iT - 53T^{2} \)
59 \( 1 + (-12.9 - 4.70i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-1.52 + 8.64i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (3.52 + 4.19i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (1.92 + 3.34i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (1.77 - 3.07i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.893 - 1.06i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-6.03 - 5.06i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (11.5 + 6.66i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.40 + 2.69i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77957678853338355156334779208, −10.42720242575493014997606361631, −8.439523397076170981973363407139, −7.77255330145582925587915140455, −6.94240900300040661406409503460, −6.36373573386643312589314993719, −5.45943951187640879269419542032, −4.43629850501772551288492308979, −3.06533527883076077416118015834, −2.22650668996051079821141140165, 0.44505356753102030340980809390, 2.49542678149644397591381648106, 3.78640638507148660235362534919, 4.53674485612440042809163477242, 5.37583204347369767362330718539, 6.03027461095541863164458008672, 7.18564840662617831780769791909, 8.535241188113525312524870494601, 9.310368010827952984950128878377, 10.29585571085408783214996723370

Graph of the $Z$-function along the critical line