Properties

Label 2-756-108.11-c1-0-101
Degree $2$
Conductor $756$
Sign $0.215 + 0.976i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.34 − 0.451i)2-s + (1.50 − 0.853i)3-s + (1.59 − 1.21i)4-s + (0.248 − 0.683i)5-s + (1.63 − 1.82i)6-s + (−0.984 − 0.173i)7-s + (1.58 − 2.34i)8-s + (1.54 − 2.57i)9-s + (0.0248 − 1.02i)10-s + (0.984 − 0.358i)11-s + (1.36 − 3.18i)12-s + (−2.69 + 2.26i)13-s + (−1.39 + 0.211i)14-s + (−0.208 − 1.24i)15-s + (1.07 − 3.85i)16-s + (−3.34 + 1.93i)17-s + ⋯
L(s)  = 1  + (0.947 − 0.319i)2-s + (0.870 − 0.492i)3-s + (0.796 − 0.605i)4-s + (0.111 − 0.305i)5-s + (0.667 − 0.744i)6-s + (−0.372 − 0.0656i)7-s + (0.561 − 0.827i)8-s + (0.514 − 0.857i)9-s + (0.00785 − 0.325i)10-s + (0.296 − 0.108i)11-s + (0.394 − 0.918i)12-s + (−0.748 + 0.628i)13-s + (−0.373 + 0.0566i)14-s + (−0.0537 − 0.320i)15-s + (0.267 − 0.963i)16-s + (−0.810 + 0.468i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.215 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.215 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $0.215 + 0.976i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 0.215 + 0.976i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.75125 - 2.20961i\)
\(L(\frac12)\) \(\approx\) \(2.75125 - 2.20961i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.34 + 0.451i)T \)
3 \( 1 + (-1.50 + 0.853i)T \)
7 \( 1 + (0.984 + 0.173i)T \)
good5 \( 1 + (-0.248 + 0.683i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (-0.984 + 0.358i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.69 - 2.26i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (3.34 - 1.93i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.50 - 1.44i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.0714 + 0.405i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (2.28 - 2.72i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (3.49 - 0.616i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-3.18 - 5.51i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-5.89 - 7.02i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (2.35 + 6.47i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.21 + 6.88i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 3.48iT - 53T^{2} \)
59 \( 1 + (-10.3 - 3.76i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (0.816 - 4.63i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (5.92 + 7.06i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.261 - 0.452i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (7.28 - 12.6i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.06 - 8.41i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-4.99 - 4.18i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (4.22 + 2.44i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.917 - 0.333i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07742798205481022832304530166, −9.388424110763920993754781033435, −8.510044531357265607336552621401, −7.23267387083050571005202586899, −6.76871449831186024583690914225, −5.65303668576961443616929041616, −4.47703520354448788156919787388, −3.57888462047618651097543450361, −2.52587459548790281817483725894, −1.41828920351484544078424644427, 2.31536946021490696871501136998, 3.03173553957285231764107726559, 4.11672717319649759144261234809, 4.96072299424237841404743119901, 6.02253215138635171688130163429, 7.16316780548141952394969724817, 7.66442926052844379979421700107, 8.841760151732437254920958670973, 9.610959575298379778000311753004, 10.58819580713281052531996098322

Graph of the $Z$-function along the critical line