Properties

Label 2-756-1.1-c1-0-4
Degree $2$
Conductor $756$
Sign $1$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s + 2·13-s + 3·17-s − 4·19-s + 6·23-s + 4·25-s − 10·31-s + 3·35-s − 7·37-s + 9·41-s + 5·43-s + 3·47-s + 49-s + 6·53-s − 9·59-s + 8·61-s + 6·65-s + 8·67-s − 12·71-s − 10·73-s + 5·79-s + 9·83-s + 9·85-s + 18·89-s + 2·91-s − 12·95-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.377·7-s + 0.554·13-s + 0.727·17-s − 0.917·19-s + 1.25·23-s + 4/5·25-s − 1.79·31-s + 0.507·35-s − 1.15·37-s + 1.40·41-s + 0.762·43-s + 0.437·47-s + 1/7·49-s + 0.824·53-s − 1.17·59-s + 1.02·61-s + 0.744·65-s + 0.977·67-s − 1.42·71-s − 1.17·73-s + 0.562·79-s + 0.987·83-s + 0.976·85-s + 1.90·89-s + 0.209·91-s − 1.23·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.052741534\)
\(L(\frac12)\) \(\approx\) \(2.052741534\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54409954642245735729574885708, −9.315596521003952447945720863588, −8.932797574998353937782771963979, −7.74428441921683397738851658769, −6.75277875262882864228727566991, −5.80414730335436521294207112036, −5.18945711306403362481099621101, −3.85586732203537612935644613708, −2.49398887598010803443464560998, −1.39408347452929253097038552736, 1.39408347452929253097038552736, 2.49398887598010803443464560998, 3.85586732203537612935644613708, 5.18945711306403362481099621101, 5.80414730335436521294207112036, 6.75277875262882864228727566991, 7.74428441921683397738851658769, 8.932797574998353937782771963979, 9.315596521003952447945720863588, 10.54409954642245735729574885708

Graph of the $Z$-function along the critical line