Properties

Label 2-756-1.1-c1-0-2
Degree $2$
Conductor $756$
Sign $1$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s + 2·11-s + 5·17-s + 2·19-s + 2·23-s − 4·25-s + 10·29-s − 35-s + 5·37-s + 3·41-s − 7·43-s − 3·47-s + 49-s + 6·53-s + 2·55-s + 59-s − 6·61-s + 4·67-s + 8·71-s + 10·73-s − 2·77-s − 3·79-s − 13·83-s + 5·85-s − 6·89-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s + 0.603·11-s + 1.21·17-s + 0.458·19-s + 0.417·23-s − 4/5·25-s + 1.85·29-s − 0.169·35-s + 0.821·37-s + 0.468·41-s − 1.06·43-s − 0.437·47-s + 1/7·49-s + 0.824·53-s + 0.269·55-s + 0.130·59-s − 0.768·61-s + 0.488·67-s + 0.949·71-s + 1.17·73-s − 0.227·77-s − 0.337·79-s − 1.42·83-s + 0.542·85-s − 0.635·89-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.706383893\)
\(L(\frac12)\) \(\approx\) \(1.706383893\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03730592756073252170993163438, −9.731110109277065823801604813257, −8.679762585429044174907509692288, −7.77797671333296440572234908419, −6.75309219456590577358633993250, −5.97440167341892660090228386416, −5.01523418584733424644218383591, −3.78800010230879522821556973826, −2.72932154679755710467964549500, −1.19245405811260080299254930543, 1.19245405811260080299254930543, 2.72932154679755710467964549500, 3.78800010230879522821556973826, 5.01523418584733424644218383591, 5.97440167341892660090228386416, 6.75309219456590577358633993250, 7.77797671333296440572234908419, 8.679762585429044174907509692288, 9.731110109277065823801604813257, 10.03730592756073252170993163438

Graph of the $Z$-function along the critical line