Properties

Label 2-75-75.8-c1-0-0
Degree $2$
Conductor $75$
Sign $-0.639 + 0.769i$
Analytic cond. $0.598878$
Root an. cond. $0.773872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.12 + 2.20i)2-s + (−1.64 − 0.550i)3-s + (−2.43 − 3.35i)4-s + (−2.18 − 0.479i)5-s + (3.06 − 3.00i)6-s + (−1.56 + 1.56i)7-s + (5.24 − 0.829i)8-s + (2.39 + 1.80i)9-s + (3.51 − 4.28i)10-s + (−2.96 + 0.963i)11-s + (2.15 + 6.84i)12-s + (−1.61 + 0.821i)13-s + (−1.69 − 5.21i)14-s + (3.32 + 1.99i)15-s + (−1.50 + 4.62i)16-s + (−0.290 − 1.83i)17-s + ⋯
L(s)  = 1  + (−0.795 + 1.56i)2-s + (−0.948 − 0.317i)3-s + (−1.21 − 1.67i)4-s + (−0.976 − 0.214i)5-s + (1.25 − 1.22i)6-s + (−0.591 + 0.591i)7-s + (1.85 − 0.293i)8-s + (0.797 + 0.602i)9-s + (1.11 − 1.35i)10-s + (−0.894 + 0.290i)11-s + (0.621 + 1.97i)12-s + (−0.447 + 0.227i)13-s + (−0.452 − 1.39i)14-s + (0.857 + 0.514i)15-s + (−0.375 + 1.15i)16-s + (−0.0704 − 0.444i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.639 + 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.639 + 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.639 + 0.769i$
Analytic conductor: \(0.598878\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1/2),\ -0.639 + 0.769i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0503226 - 0.107245i\)
\(L(\frac12)\) \(\approx\) \(0.0503226 - 0.107245i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.64 + 0.550i)T \)
5 \( 1 + (2.18 + 0.479i)T \)
good2 \( 1 + (1.12 - 2.20i)T + (-1.17 - 1.61i)T^{2} \)
7 \( 1 + (1.56 - 1.56i)T - 7iT^{2} \)
11 \( 1 + (2.96 - 0.963i)T + (8.89 - 6.46i)T^{2} \)
13 \( 1 + (1.61 - 0.821i)T + (7.64 - 10.5i)T^{2} \)
17 \( 1 + (0.290 + 1.83i)T + (-16.1 + 5.25i)T^{2} \)
19 \( 1 + (3.62 - 4.98i)T + (-5.87 - 18.0i)T^{2} \)
23 \( 1 + (-3.38 - 1.72i)T + (13.5 + 18.6i)T^{2} \)
29 \( 1 + (-1.02 + 0.743i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (2.59 + 1.88i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (2.20 + 4.32i)T + (-21.7 + 29.9i)T^{2} \)
41 \( 1 + (-3.49 - 1.13i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (-0.478 - 0.478i)T + 43iT^{2} \)
47 \( 1 + (11.8 + 1.87i)T + (44.6 + 14.5i)T^{2} \)
53 \( 1 + (0.590 - 3.72i)T + (-50.4 - 16.3i)T^{2} \)
59 \( 1 + (3.54 - 10.9i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (1.39 + 4.29i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + (2.12 - 0.336i)T + (63.7 - 20.7i)T^{2} \)
71 \( 1 + (2.82 + 3.88i)T + (-21.9 + 67.5i)T^{2} \)
73 \( 1 + (-2.61 + 5.12i)T + (-42.9 - 59.0i)T^{2} \)
79 \( 1 + (0.567 + 0.781i)T + (-24.4 + 75.1i)T^{2} \)
83 \( 1 + (0.118 - 0.0187i)T + (78.9 - 25.6i)T^{2} \)
89 \( 1 + (3.39 + 10.4i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (2.60 - 16.4i)T + (-92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.64007030744557448881915801823, −14.74867796337539598223182406890, −13.04153398973744584354705684762, −12.06676665779988176135708723963, −10.60123620533649373402447368181, −9.338601459244012863944220357977, −7.993951078785933556483615674608, −7.18228019473913251267123344382, −5.99349682424034997860048418164, −4.83712797999893565336478935951, 0.21915368799849769860659765837, 3.21501499151319557323312458264, 4.59468909109578057490697890200, 6.95318895905335868984830790406, 8.427817236387371833602603215051, 9.854439301631481830138094260574, 10.76463029998037945993618670093, 11.23783242223008526359377386587, 12.49698019939017163883236510200, 13.06349820152740353020659548333

Graph of the $Z$-function along the critical line