| L(s) = 1 | − 15.1i·2-s − 27i·3-s − 101.·4-s − 408.·6-s − 198. i·7-s − 407. i·8-s − 729·9-s − 5.26e3·11-s + 2.72e3i·12-s + 1.21e3i·13-s − 3.01e3·14-s − 1.91e4·16-s + 3.45e4i·17-s + 1.10e4i·18-s − 1.86e4·19-s + ⋯ |
| L(s) = 1 | − 1.33i·2-s − 0.577i·3-s − 0.789·4-s − 0.772·6-s − 0.219i·7-s − 0.281i·8-s − 0.333·9-s − 1.19·11-s + 0.455i·12-s + 0.153i·13-s − 0.293·14-s − 1.16·16-s + 1.70i·17-s + 0.445i·18-s − 0.622·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(4)\) |
\(\approx\) |
\(0.225636 + 0.139451i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.225636 + 0.139451i\) |
| \(L(\frac{9}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + 27iT \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + 15.1iT - 128T^{2} \) |
| 7 | \( 1 + 198. iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 5.26e3T + 1.94e7T^{2} \) |
| 13 | \( 1 - 1.21e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 3.45e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 + 1.86e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + 3.33e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.78e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + 2.37e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + 4.82e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 2.93e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 4.43e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 4.81e4iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 1.66e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 1.75e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 3.15e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 2.29e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 2.71e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 2.67e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 3.44e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 1.71e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 3.52e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 1.44e7iT - 8.07e13T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45797416320093234086572849633, −10.87401463145050654114399131888, −10.49203853106878573050615137612, −8.926492247153388406286236946505, −7.61724819395374531984633734425, −6.11024958504832026711128529619, −4.24925815523485444179559158555, −2.75597472497793872879218896709, −1.59894080764473113331254024960, −0.085392835771727571337748015367,
2.72147096715287104997604370064, 4.77447491652459104401299138416, 5.62074543651933436627331023046, 7.03510198594618798712833283773, 8.103363065944355400649924285767, 9.204269018106329150062148569955, 10.52465115487057917496196747526, 11.75017472126840584845126196379, 13.32762292629111400690742315675, 14.27725979099622140692698234731