L(s) = 1 | + 1.27e3i·2-s + 5.90e4i·3-s + 4.79e5·4-s − 7.51e7·6-s − 6.32e8i·7-s + 3.27e9i·8-s − 3.48e9·9-s + 5.97e10·11-s + 2.83e10i·12-s + 7.38e11i·13-s + 8.03e11·14-s − 3.16e12·16-s + 8.35e12i·17-s − 4.43e12i·18-s − 4.19e13·19-s + ⋯ |
L(s) = 1 | + 0.878i·2-s + 0.577i·3-s + 0.228·4-s − 0.507·6-s − 0.845i·7-s + 1.07i·8-s − 0.333·9-s + 0.694·11-s + 0.131i·12-s + 1.48i·13-s + 0.742·14-s − 0.719·16-s + 1.00i·17-s − 0.292i·18-s − 1.56·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(\approx\) |
\(2.242449647\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.242449647\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 5.90e4iT \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.27e3iT - 2.09e6T^{2} \) |
| 7 | \( 1 + 6.32e8iT - 5.58e17T^{2} \) |
| 11 | \( 1 - 5.97e10T + 7.40e21T^{2} \) |
| 13 | \( 1 - 7.38e11iT - 2.47e23T^{2} \) |
| 17 | \( 1 - 8.35e12iT - 6.90e25T^{2} \) |
| 19 | \( 1 + 4.19e13T + 7.14e26T^{2} \) |
| 23 | \( 1 - 4.48e13iT - 3.94e28T^{2} \) |
| 29 | \( 1 - 2.76e15T + 5.13e30T^{2} \) |
| 31 | \( 1 - 8.36e15T + 2.08e31T^{2} \) |
| 37 | \( 1 - 1.77e16iT - 8.55e32T^{2} \) |
| 41 | \( 1 - 1.45e17T + 7.38e33T^{2} \) |
| 43 | \( 1 - 1.24e17iT - 2.00e34T^{2} \) |
| 47 | \( 1 + 4.28e17iT - 1.30e35T^{2} \) |
| 53 | \( 1 + 4.77e17iT - 1.62e36T^{2} \) |
| 59 | \( 1 + 1.61e18T + 1.54e37T^{2} \) |
| 61 | \( 1 + 3.76e18T + 3.10e37T^{2} \) |
| 67 | \( 1 - 2.81e18iT - 2.22e38T^{2} \) |
| 71 | \( 1 - 1.00e19T + 7.52e38T^{2} \) |
| 73 | \( 1 + 1.72e19iT - 1.34e39T^{2} \) |
| 79 | \( 1 - 3.28e19T + 7.08e39T^{2} \) |
| 83 | \( 1 - 3.05e17iT - 1.99e40T^{2} \) |
| 89 | \( 1 + 2.34e20T + 8.65e40T^{2} \) |
| 97 | \( 1 - 5.92e20iT - 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11290954418206893715961523766, −10.21801295484969687473766273490, −8.901128781049873104104098314877, −8.015269581128377723741692581802, −6.63739855544251972700228819658, −6.29640882822115764512252909217, −4.62767890489364007231218704559, −4.00481222297773563482225710949, −2.42348668898736925595271242704, −1.25251227757390832482223488218,
0.40058697550043657138456475694, 1.17307038601411434892283850991, 2.47537815326291899209478447555, 2.84952277548593587170661003060, 4.35021964433810738816001787369, 5.86240543607005187397095327084, 6.69224736344413004036323096692, 7.972715030782159659530768488031, 9.065795659541318787051725766843, 10.26949938714632504980686518589