Properties

Label 2-75-3.2-c12-0-47
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $68.5495$
Root an. cond. $8.27946$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 729·3-s + 4.09e3·4-s + 1.53e5·7-s + 5.31e5·9-s − 2.98e6·12-s + 9.39e6·13-s + 1.67e7·16-s + 1.78e7·19-s − 1.11e8·21-s − 3.87e8·27-s + 6.28e8·28-s − 5.30e8·31-s + 2.17e9·36-s − 2.82e9·37-s − 6.85e9·39-s + 2.35e8·43-s − 1.22e10·48-s + 9.72e9·49-s + 3.84e10·52-s − 1.30e10·57-s + 7.40e10·61-s + 8.15e10·63-s + 6.87e10·64-s + 1.51e11·67-s − 1.04e11·73-s + 7.32e10·76-s − 4.44e11·79-s + ⋯
L(s)  = 1  − 3-s + 4-s + 1.30·7-s + 9-s − 12-s + 1.94·13-s + 16-s + 0.380·19-s − 1.30·21-s − 27-s + 1.30·28-s − 0.597·31-s + 36-s − 1.10·37-s − 1.94·39-s + 0.0373·43-s − 48-s + 0.702·49-s + 1.94·52-s − 0.380·57-s + 1.43·61-s + 1.30·63-s + 64-s + 1.66·67-s − 0.690·73-s + 0.380·76-s − 1.82·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(68.5495\)
Root analytic conductor: \(8.27946\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{75} (26, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(2.832701704\)
\(L(\frac12)\) \(\approx\) \(2.832701704\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{6} T \)
5 \( 1 \)
good2 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
7 \( 1 - 153502 T + p^{12} T^{2} \)
11 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
13 \( 1 - 9397582 T + p^{12} T^{2} \)
17 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
19 \( 1 - 17886962 T + p^{12} T^{2} \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
31 \( 1 + 530187838 T + p^{12} T^{2} \)
37 \( 1 + 2826257618 T + p^{12} T^{2} \)
41 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
43 \( 1 - 235885102 T + p^{12} T^{2} \)
47 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
53 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
59 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
61 \( 1 - 74063873522 T + p^{12} T^{2} \)
67 \( 1 - 151031344462 T + p^{12} T^{2} \)
71 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
73 \( 1 + 104459767778 T + p^{12} T^{2} \)
79 \( 1 + 444304748158 T + p^{12} T^{2} \)
83 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
89 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
97 \( 1 - 1662757858942 T + p^{12} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.61481695444534570459312059919, −11.21528381844666373910827217893, −10.34703734279190253931526763409, −8.494501547721573364448423868410, −7.32031862708110256630908441334, −6.18737690968055044414497721189, −5.23292862952214587992268179796, −3.73624489617432148742797693475, −1.80858070368851312242710260811, −1.02588038100240452358310312493, 1.02588038100240452358310312493, 1.80858070368851312242710260811, 3.73624489617432148742797693475, 5.23292862952214587992268179796, 6.18737690968055044414497721189, 7.32031862708110256630908441334, 8.494501547721573364448423868410, 10.34703734279190253931526763409, 11.21528381844666373910827217893, 11.61481695444534570459312059919

Graph of the $Z$-function along the critical line